Owing to the ubiquity of wireless networks and the popularity of WiFi infrastructures,received signal strength(RSS)-based indoor localization systems have received much attention.The placement of access points(APs)sig...Owing to the ubiquity of wireless networks and the popularity of WiFi infrastructures,received signal strength(RSS)-based indoor localization systems have received much attention.The placement of access points(APs)significantly influences localization accuracy and network access.However,the indoor scenario and network access are not fully considered in previous AP placement optimization methods.This study proposes a practical scenario modelingaided AP placement optimization method for improving localization accuracy and network access.In order to reduce the gap between simulation-based and field measurement-based AP placement optimization methods,we introduce an indoor scenario modeling and Gaussian process-based RSS prediction method.After that,the localization and network access metrics are implemented in the multiple objective particle swarm optimization(MOPSO)solution,Pareto front criterion and virtual repulsion force are applied to determine the optimal AP placement.Finally,field experiments demonstrate the effectiveness of the proposed indoor scenario modeling method and RSS prediction model.A thorough comparison confirms the localization and network access improvement attributed to the proposed anchor placement method.展开更多
Link asymmetry in wireless mesh access networks(WMAN)of Mobile ad-hoc Networks(MANETs)is due mesh routers’transmission range.It is depicted as significant research challenges that pose during the design of network pro...Link asymmetry in wireless mesh access networks(WMAN)of Mobile ad-hoc Networks(MANETs)is due mesh routers’transmission range.It is depicted as significant research challenges that pose during the design of network protocol in wireless networks.Based on the extensive review,it is noted that the substantial link percentage is symmetric,i.e.,many links are unidirectional.It is identified that the synchronous acknowledgement reliability is higher than the asynchronous message.Therefore,the process of establishing bidirectional link quality through asynchronous beacons underrates the link reliability of asym-metric links.It paves the way to exploit an investigation on asymmetric links to enhance network functions through link estimation.Here,a novel Learning-based Dynamic Tree routing(LDTR)model is proposed to improve network performance and delay.For the evaluation of delay measures,asymmetric link,interference,probability of transmission failure is evaluated.The proportion of energy consumed is used for monitoring energy conditions based on the total energy capacity.This learning model is a productive way for resolving the routing issues over the network model during uncertainty.The asymmetric path is chosen to achieve exploitation and exploration iteratively.The learning-based Dynamic Tree routing model is utilized to resolve the multi-objective routing problem.Here,the simulation is done with MATLAB 2020a simulation environment and path with energy-efficiency and lesser E2E delay is evaluated and compared with existing approaches like the Dyna-Q-network model(DQN),asymmetric MAC model(AMAC),and cooperative asymmetric MAC model(CAMAC)model.The simulation outcomes demonstrate that the anticipated LDTR model attains superior network performance compared to others.The average energy consump-tion is 250 J,packet energy consumption is 6.5 J,PRR is 50 bits/sec,95%PDR,average delay percentage is 20%.展开更多
Using native CMOS technology,EDA tool,and adopting full-custom design methodology,a laser diode driver for the use of STM-1 and STM-4 optical access network,is realized by CSMC-HJ 0.6μm CMOS technology to modulate la...Using native CMOS technology,EDA tool,and adopting full-custom design methodology,a laser diode driver for the use of STM-1 and STM-4 optical access network,is realized by CSMC-HJ 0.6μm CMOS technology to modulate laser diodes at 155Mb/s (STM-1),622Mb/s (STM-4) with adjustable modulation current from 0 to 50mA for an equivalent 50Ω load.The maximum modulation voltage is over 2.5V pp corresponding to a 3V DC bias for output stage.The time range of rise and fall from 360ps to 471ps is measured from the output voltage pulse.The RMS jitter is no more than 30ps for four bit rates.The power consumption is less than 410mW under a power supply voltage of 5V.According to the experimental results,the laser diode driver achieves the same level as their counterparts worldwide.展开更多
Even though various wireless Net- work Access Technologies (NATs) with dif- ferent specifications and applications have been developed in the recent years, no single wireless technology alone can satisfy the any- ti...Even though various wireless Net- work Access Technologies (NATs) with dif- ferent specifications and applications have been developed in the recent years, no single wireless technology alone can satisfy the any- time, anywhere, and any service wire- less-access needs of mobile users. A real seamless wireless mobile environment is only realized by considering vertical and horizontal handoffs together. One of the major design issues in heterogeneous wireless networks is the support of Vertical Handoff (VHO). VHO occurs when a multi-interface enabled mobile terminal changes its Point of Attachment (PoA) from one type of wireless access technology to another, while maintaining an active session. In this paper we present a novel multi-criteria VHO algorithm, which chooses the target NAT based on several factors such as user preferences, system parameters, and traf- tic-types with varying Quality of Service (QoS) requirements. Two modules i.e., VHO Neces- sity Estimation (VHONE) module and target NAT selection module, are designed. Both modules utilize several "weighted" users' and system's parameters. To improve the robust- ness of the proposed algorithm, the weighting system is designed based on the concept of fuzzy linguistic variables.展开更多
In order to alleviate capacity constraints on the fronthaul and decrease the transmit latency, a hierarchical content caching paradigm is applied in the fog radio access networks(F-RANs). In particular, a specific clu...In order to alleviate capacity constraints on the fronthaul and decrease the transmit latency, a hierarchical content caching paradigm is applied in the fog radio access networks(F-RANs). In particular, a specific cluster of remote radio heads is formed through a common centralized cloud at the baseband unit pool, while the local content is directly delivered at fog access points with edge cache and distributed radio signal processing capability. Focusing on a downlink F-RAN, the explicit expressions of ergodic rate for the hierarchical paradigm is derived. Meanwhile, both the waiting delay and latency ratio for users requiring a single content are exploited. According to the evaluation results of ergodic rate on waiting delay, the transmit latency can be effectively reduced through improving the capacity of both fronthaul and radio access links. Moreover, to fully explore the potential of hierarchical content caching, the transmit latency for users requiring multiple content objects is optimized as well in three content transmission cases with different radio access links. The simulation results verify the accuracy of the analysis, further show the latency decreases significantly due to the hierarchical paradigm.展开更多
The interplay between artificial intelligence(AI) and fog radio access networks(F-RANs) is investigated in this work from two perspectives: how F-RANs enable hierarchical AI to be deployed in wireless networks and how...The interplay between artificial intelligence(AI) and fog radio access networks(F-RANs) is investigated in this work from two perspectives: how F-RANs enable hierarchical AI to be deployed in wireless networks and how AI makes F-RANs smarter to better serve mobile devices. Due to the heterogeneity of processing capability, the cloud, fog, and device layers in F-RANs provide hierarchical intelligence via centralized, distributed, and federated learning. In addition, cross-layer learning is also introduced to further reduce the demand for the memory size of the mobile devices. On the other hand, AI provides F-RANs with technologies and methods to deal with massive data and make smarter decisions. Specifically, machine learning tools such as deep neural networks are introduced for data processing, while reinforcement learning(RL) algorithms are adopted for network optimization and decisions. Then, two examples of AI-based applications in F-RANs, i.e., health monitoring and intelligent transportation systems, are presented, followed by a case study of an RL-based caching application in the presence of spatio-temporal unknown content popularity to showcase the potential of applying AI to F-RANs.展开更多
Ultra-densification of radio access network(RAN)is a key to efficiently support the exponentially growing mobile data traffic in 5 G era.Furthermore,extremely high frequency band like mm Wave band was utilized to solv...Ultra-densification of radio access network(RAN)is a key to efficiently support the exponentially growing mobile data traffic in 5 G era.Furthermore,extremely high frequency band like mm Wave band was utilized to solve the bandwidth shortage problem.However,untra-dense reusing the same radio resource produced severe interference.And the mm Wave link was very harsh due to frequent blockage by obstacles.Therefore a new RAN architecture needed to be introduced to realize ultra-reliable communications in such a severe radio propagation environment.An architecture of distributed MIMO based RAN was presented.Then,enhanced interference coordination(e IC)was described.Finally,the effectiveness of distributed MIMO based RAN with e IC by computer simulation was showed.展开更多
This paper investigates on the base stations(BSs) sleeping control and energy saving in wireless network. The objective is to find the sleeping control and energy saving configuration between total power consumption a...This paper investigates on the base stations(BSs) sleeping control and energy saving in wireless network. The objective is to find the sleeping control and energy saving configuration between total power consumption and average video's quality. On the Software Defined Network(SDN) access network architecture, a type of sleeping control and active BSs' optimal transmitting time strategy is considered, the BS sleeps when there is no active users, and wakes up after a period of vacation time. In this paper, we study the active users grouping strategy, In order to spare more BSs into sleeping mode. Then this paper proposes an active BS transmitting time optimal strategy according to the users' Qo S. In the proposed strategy, the active BSs' transmitting time is minimized in order to save energy. This paper employs the mixed integer-programming model to present this optimization problem. Then we utilized a novel algorithm to save the energy in access networks and also meet the Qo S requirements. Both the analytical and simulation results show that the algorithm can effectively save energy in the access network BSs.展开更多
The development of communication technologies which support traffic-intensive applications presents new challenges in designing a real-time traffic analysis architecture and an accurate method that suitable for a wide...The development of communication technologies which support traffic-intensive applications presents new challenges in designing a real-time traffic analysis architecture and an accurate method that suitable for a wide variety of traffic types.Current traffic analysis methods are executed on the cloud,which needs to upload the traffic data.Fog computing is a more promising way to save bandwidth resources by offloading these tasks to the fog nodes.However,traffic analysis models based on traditional machine learning need to retrain all traffic data when updating the trained model,which are not suitable for fog computing due to the poor computing power.In this study,we design a novel fog computing based traffic analysis system using broad learning.For one thing,fog computing can provide a distributed architecture for saving the bandwidth resources.For another,we use the broad learning to incrementally train the traffic data,which is more suitable for fog computing because it can support incremental updates of models without retraining all data.We implement our system on the Raspberry Pi,and experimental results show that we have a 98%probability to accurately identify these traffic data.Moreover,our method has a faster training speed compared with Convolutional Neural Network(CNN).展开更多
Free Space Optical (FSO) networks, also known as optical wireless networks, have emerged as viable candidates for broadband wireless communications in the near future. The range of the potential application of FSO n...Free Space Optical (FSO) networks, also known as optical wireless networks, have emerged as viable candidates for broadband wireless communications in the near future. The range of the potential application of FSO networks is extensive, from home to satellite. However, FSO networks have not been popularized because of insufficient availability and reliability. Researchers have focused on the problems in the physical layer in order to exploit the properties of wireless optical channels. However, recent technological developments with successful results make it practical to explore the advantages of the high bandwidth. Some researchers have begun to focus on the problems of network and upper layers in FSO networks. In this survey, we classify prospective global FSO networks into three subnetworks and give an account of them. We also present state-of- the-art research and discuss what kinds of challenges exist.展开更多
Network slicing based fog radio access network(F-RAN) has emerged as a promising architecture to support various novel applications in 5 G-and-beyond wireless networks. However, the co-existence of multiple network sl...Network slicing based fog radio access network(F-RAN) has emerged as a promising architecture to support various novel applications in 5 G-and-beyond wireless networks. However, the co-existence of multiple network slices in F-RANs may lead to significant performance degradation due to the resource competitions among different network slices. In this paper, the downlink F-RANs with a hotspot slice and an Internet of Things(Io T) slice are considered, in which the user equipments(UEs) of different slices share the same spectrum. A novel joint resource allocation and admission control scheme is developed to maximize the number of UEs in the hotspot slice that can be supported with desired quality-of-service, while satisfying the interference constraint of the UEs in the Io T slice. Specifically, the admission control and beamforming vector optimization are performed in the hotspot slice to maximize the number of admitted UEs, while the joint sub-channel and power allocation is performed in the Io T slice to maximize the capability of the UEs in the Io T slice tolerating the interference from the hotspot slice. Numerical results show that our proposed scheme can effectively boost the number of UEs in the hotspot slice compared to the existing baselines.展开更多
This paper brings forward a novel dynamic multiple access network selection scheme(NDMAS),which could achieve less energy loss and improve the poor adaptive capability caused by the variable network parameters.Firstly...This paper brings forward a novel dynamic multiple access network selection scheme(NDMAS),which could achieve less energy loss and improve the poor adaptive capability caused by the variable network parameters.Firstly,a multiple access network selection mathematical model based on information theory is presented.From the perspective of information theory,access selection is essentially a process to reduce the information entropy in the system.It can be found that the lower the information entropy is,the better the system performance fulfills.Therefore,this model is designed to reduce the information entropy by removing redundant parameters,and to avoid the computational cost as well.Secondly,for model implementation,the Principal Component Analysis(PCA) is employed to process the observation data to find out the related factors which affect the users most.As a result,the information entropy is decreased.Theoretical analysis proves that system loss and computational complexity have been decreased by using the proposed approach,while the network QoS and accuracy are guaranteed.Finally,simulation results show that our scheme achieves much better system performance in terms of packet delay,throughput and call blocking probability than other currently existing ones.展开更多
This paper relates to an advanced open mobile communication system and method of integrating the mobile communications, wireless access systems and wired communications into one common platform architecture for China&...This paper relates to an advanced open mobile communication system and method of integrating the mobile communications, wireless access systems and wired communications into one common platform architecture for China's 4th generation mobile communications, supporting costeffective broadband voice, data and video services in wireless, mobile and wired environment with one single integrated mobile terminal device. The paper includes new architecture in the integrated mobile device and converged network access, and minimum modifi cation in the existing mobile telecommunication infrastructures. This paper introduces the long-term evolution strategy for China's TDD system platform towards China's future 4G mobile communications.展开更多
MORPAS is a special GIS (geographic information system) software system, based on the MAPGIS platform whose aim is to prospect and evaluate mineral resources quantificationally by synthesizing geological, geophysical,...MORPAS is a special GIS (geographic information system) software system, based on the MAPGIS platform whose aim is to prospect and evaluate mineral resources quantificationally by synthesizing geological, geophysical, geochemical and remote sensing data. It overlays geological database management, geological background and geological abnormality analysis, image processing of remote sensing and comprehensive abnormality analysis, etc.. It puts forward an integrative solution for the application of GIS in basic-level units and the construction of information engineering in the geological field. As the popularization of computer networks and the request of data sharing, it is necessary to extend its functions in data management so that all its data files can be accessed in the network server. This paper utilizes some MAPGIS functions for the second development and ADO (access data object) technique to access multi-source geological data in SQL Server databases. Then remote visiting and congruous management will be realized in the MORPAS system.展开更多
Using CSMA/CD for EPON can eliminate the augmentations, such as multi-point control protocol and point-to-point emulation, added to the existing 802.3 architecture due to the incompatibility of PON to Ethernet. Both f...Using CSMA/CD for EPON can eliminate the augmentations, such as multi-point control protocol and point-to-point emulation, added to the existing 802.3 architecture due to the incompatibility of PON to Ethernet. Both full-duplex EPON system and half-duplex EPON system using CSMA/CD were proposed. In the full-duplex EPON, CSMA/CD is used as the upstream MAC protocol. In the half-duplex EPON system, both upstream and downstream traffic contend for the optical channel through CSMA/CD protocol. The upstream lightwave redirection and collision detection techniques were given. By the analysis and simulation, the throughput performance of the half-duplex EPON system is proven to be as well as that of the existing high speed half-duplex Ethernet LAN.展开更多
To handle the handover challenge in Express Train Access Networks(ETAN).mobility fading effects in high speed railway environments should be addressed first.Based on the investigation of fading effects in this paper,w...To handle the handover challenge in Express Train Access Networks(ETAN).mobility fading effects in high speed railway environments should be addressed first.Based on the investigation of fading effects in this paper,we obtain two theoretical bounds:HOTiming upper bound and HO-Margin lower bound,which are helpful guidelines to study the handover challenge today and in the future.Then,we apply them to analyze performance of conventional handover technologies and our proposal in ETAN.This follow-up theory analyses and simulation experiment results demonstrate that the proposed handover solution can minimize handover time up to 4ms(which is the fastest one so far),and reduce HO-Margin to 0.16 dB at a train speed of 350km/h.展开更多
The installation of small cells in a 5G network extends the maximum coverage and provides high availability.However,this approach increases the handover overhead in the Core Network(CN)due to frequent handoffs.The var...The installation of small cells in a 5G network extends the maximum coverage and provides high availability.However,this approach increases the handover overhead in the Core Network(CN)due to frequent handoffs.The variation of user density and movement inside a region of small cells also increases the handover overhead in CN.However,the present 5G system cannot reduce the handover overhead in CN under such circumstances because it relies on a traditionally rigid and complex hierarchical sequence for a handover procedure.Recently,Not Only Stack(NO Stack)architecture has been introduced for Radio Access Network(RAN)to reduce the signaling during handover.This paper proposes a system based on NO Stack architecture and solves the aforementioned problem by adding a dedicated local mobility controller to the edge cloud for each cluster.The dedicated cluster controller manages the user mobility locally inside a cluster and also maintains the forwarding data of a mobile user locally.To reduce the latency for X2-based handover requests,an edge cloud infrastructure has been also developed to provide high-computing for dedicated controllers at the edge of a cellular network.The proposed system is also compared with the traditional 3GPP architecture and other works in the context of overhead and delay caused by X2-based handover requests during user mobility.Simulated results show that the inclusion of a dedicated local controller for small clusters together with the implementation of NO Stack framework reduces the significant amount of overhead of X2-based handover requests at CN.展开更多
Dynamic spectrum access technologies based on Cognitive Radio(CR) is under intensive research carried out by the wireless communication society and is expected to solve the problem of spectrum scarcity.However,most en...Dynamic spectrum access technologies based on Cognitive Radio(CR) is under intensive research carried out by the wireless communication society and is expected to solve the problem of spectrum scarcity.However,most enabling technologies related to dynamic spectrum access are con-sidered individually.In this paper,we consider these key technologies jointly and introduce a new implementation scheme for a Dynamic Spectrum Access Network Based on Cognitive Radio(DSAN-BCR).We start with a flexible hardware platform for DSAN-BCR,as well as a flexible protocol structure that dominates the operation of DSAN-BCR.We then focus on the state of the art of key technologies such as spectrum sensing,spectrum resources management,dynamic spectrum access,and routing that are below the network layer in DSAN-BCR,as well as the development of technologies related to higher layers.Last but not the least,we analyze the challenges confronted by these men-tioned technologies in DSAN-BCR,and give the perspectives on the future development of these technologies.The DSAN-BCR introduced is expected to provide a system level guidance to alleviate the problem of spectrum scarcity.展开更多
High-speed train communication system is a typical high-mobility wireless communication network. Resource allocation problem has a great impact on the system performance. However, conventional resource allocation appr...High-speed train communication system is a typical high-mobility wireless communication network. Resource allocation problem has a great impact on the system performance. However, conventional resource allocation approaches in cellular network cannot be directly applied to this kind of special communication environment. A multidomain resource allocation strategy was proposed in the orthogonal frequency-division multiple access(OFDMA) of high-speed. By analyzing the effect of Doppler shift, sub-channels, antennas, time slots and power were jointly considered to maximize the energy efficiency under the constraint of total transmission power. For the purpose of reducing the computational complexity, noisy chaotic neural network algorithm was used to solve the above optimization problem. Simulation results showed that the proposed resource allocation method had a better performance than the traditional strategy.展开更多
While operators have started deploying fourth generation(4G) wireless communication systems,which could provide up to1 Gbps downlink peak data rate,the improved system capacity is still insufficient to meet the drasti...While operators have started deploying fourth generation(4G) wireless communication systems,which could provide up to1 Gbps downlink peak data rate,the improved system capacity is still insufficient to meet the drastically increasing demand of mobile users over the next decade.The main causes of the above-mentioned phenomenon include the following two aspects:1) the growth rate of the network capacity is far below that of user's demand,and 2) the relatively deterministic wireless access network(WAN) architecture in the existing systems cannot accommodate the prominent increase of mobile traffic with space-time domain dynamics.In order to address the above-mentioned challenges,we investigate the time-spatial consistency architecture for the future WAN,whilst emphasizing the critical roles of some spectral-efficient techniques such as Massive multiple-input multiple-output(MIMO),full-duplex(FD)operation and heterogeneous networks(HetNets).Furthermore,the energy efficiency(EE)of the HetNets under the proposed architecture is also evaluated,showing that the proposed user-selected uplink power control algorithm outperforms the traditional stochastic-scheduling strategy in terms of both capacity and EE in a two-tier HetNet.The other critical issues,including the tidal effect,the temporal failure owing to the instantaneously increased traffic,and the network wide load-balancing problem,etc.,are also anticipated to be addressed in the proposed architecture.(Abstract)展开更多
文摘Owing to the ubiquity of wireless networks and the popularity of WiFi infrastructures,received signal strength(RSS)-based indoor localization systems have received much attention.The placement of access points(APs)significantly influences localization accuracy and network access.However,the indoor scenario and network access are not fully considered in previous AP placement optimization methods.This study proposes a practical scenario modelingaided AP placement optimization method for improving localization accuracy and network access.In order to reduce the gap between simulation-based and field measurement-based AP placement optimization methods,we introduce an indoor scenario modeling and Gaussian process-based RSS prediction method.After that,the localization and network access metrics are implemented in the multiple objective particle swarm optimization(MOPSO)solution,Pareto front criterion and virtual repulsion force are applied to determine the optimal AP placement.Finally,field experiments demonstrate the effectiveness of the proposed indoor scenario modeling method and RSS prediction model.A thorough comparison confirms the localization and network access improvement attributed to the proposed anchor placement method.
文摘Link asymmetry in wireless mesh access networks(WMAN)of Mobile ad-hoc Networks(MANETs)is due mesh routers’transmission range.It is depicted as significant research challenges that pose during the design of network protocol in wireless networks.Based on the extensive review,it is noted that the substantial link percentage is symmetric,i.e.,many links are unidirectional.It is identified that the synchronous acknowledgement reliability is higher than the asynchronous message.Therefore,the process of establishing bidirectional link quality through asynchronous beacons underrates the link reliability of asym-metric links.It paves the way to exploit an investigation on asymmetric links to enhance network functions through link estimation.Here,a novel Learning-based Dynamic Tree routing(LDTR)model is proposed to improve network performance and delay.For the evaluation of delay measures,asymmetric link,interference,probability of transmission failure is evaluated.The proportion of energy consumed is used for monitoring energy conditions based on the total energy capacity.This learning model is a productive way for resolving the routing issues over the network model during uncertainty.The asymmetric path is chosen to achieve exploitation and exploration iteratively.The learning-based Dynamic Tree routing model is utilized to resolve the multi-objective routing problem.Here,the simulation is done with MATLAB 2020a simulation environment and path with energy-efficiency and lesser E2E delay is evaluated and compared with existing approaches like the Dyna-Q-network model(DQN),asymmetric MAC model(AMAC),and cooperative asymmetric MAC model(CAMAC)model.The simulation outcomes demonstrate that the anticipated LDTR model attains superior network performance compared to others.The average energy consump-tion is 250 J,packet energy consumption is 6.5 J,PRR is 50 bits/sec,95%PDR,average delay percentage is 20%.
文摘Using native CMOS technology,EDA tool,and adopting full-custom design methodology,a laser diode driver for the use of STM-1 and STM-4 optical access network,is realized by CSMC-HJ 0.6μm CMOS technology to modulate laser diodes at 155Mb/s (STM-1),622Mb/s (STM-4) with adjustable modulation current from 0 to 50mA for an equivalent 50Ω load.The maximum modulation voltage is over 2.5V pp corresponding to a 3V DC bias for output stage.The time range of rise and fall from 360ps to 471ps is measured from the output voltage pulse.The RMS jitter is no more than 30ps for four bit rates.The power consumption is less than 410mW under a power supply voltage of 5V.According to the experimental results,the laser diode driver achieves the same level as their counterparts worldwide.
文摘Even though various wireless Net- work Access Technologies (NATs) with dif- ferent specifications and applications have been developed in the recent years, no single wireless technology alone can satisfy the any- time, anywhere, and any service wire- less-access needs of mobile users. A real seamless wireless mobile environment is only realized by considering vertical and horizontal handoffs together. One of the major design issues in heterogeneous wireless networks is the support of Vertical Handoff (VHO). VHO occurs when a multi-interface enabled mobile terminal changes its Point of Attachment (PoA) from one type of wireless access technology to another, while maintaining an active session. In this paper we present a novel multi-criteria VHO algorithm, which chooses the target NAT based on several factors such as user preferences, system parameters, and traf- tic-types with varying Quality of Service (QoS) requirements. Two modules i.e., VHO Neces- sity Estimation (VHONE) module and target NAT selection module, are designed. Both modules utilize several "weighted" users' and system's parameters. To improve the robust- ness of the proposed algorithm, the weighting system is designed based on the concept of fuzzy linguistic variables.
基金supported in part by the National Natural Science Foundation of China (Grant No.61361166005)the State Major Science and Technology Special Projects (Grant No.2016ZX03001020006)the National Program for Support of Top-notch Young Professionals
文摘In order to alleviate capacity constraints on the fronthaul and decrease the transmit latency, a hierarchical content caching paradigm is applied in the fog radio access networks(F-RANs). In particular, a specific cluster of remote radio heads is formed through a common centralized cloud at the baseband unit pool, while the local content is directly delivered at fog access points with edge cache and distributed radio signal processing capability. Focusing on a downlink F-RAN, the explicit expressions of ergodic rate for the hierarchical paradigm is derived. Meanwhile, both the waiting delay and latency ratio for users requiring a single content are exploited. According to the evaluation results of ergodic rate on waiting delay, the transmit latency can be effectively reduced through improving the capacity of both fronthaul and radio access links. Moreover, to fully explore the potential of hierarchical content caching, the transmit latency for users requiring multiple content objects is optimized as well in three content transmission cases with different radio access links. The simulation results verify the accuracy of the analysis, further show the latency decreases significantly due to the hierarchical paradigm.
基金supported in part by the National Natural Science Foundation of China under Grants U1805262,61871446,and 61671251。
文摘The interplay between artificial intelligence(AI) and fog radio access networks(F-RANs) is investigated in this work from two perspectives: how F-RANs enable hierarchical AI to be deployed in wireless networks and how AI makes F-RANs smarter to better serve mobile devices. Due to the heterogeneity of processing capability, the cloud, fog, and device layers in F-RANs provide hierarchical intelligence via centralized, distributed, and federated learning. In addition, cross-layer learning is also introduced to further reduce the demand for the memory size of the mobile devices. On the other hand, AI provides F-RANs with technologies and methods to deal with massive data and make smarter decisions. Specifically, machine learning tools such as deep neural networks are introduced for data processing, while reinforcement learning(RL) algorithms are adopted for network optimization and decisions. Then, two examples of AI-based applications in F-RANs, i.e., health monitoring and intelligent transportation systems, are presented, followed by a case study of an RL-based caching application in the presence of spatio-temporal unknown content popularity to showcase the potential of applying AI to F-RANs.
基金The Research and Development for Further Advancement of the 5th Generation Mobile Communication System(No.JP1000254)。
文摘Ultra-densification of radio access network(RAN)is a key to efficiently support the exponentially growing mobile data traffic in 5 G era.Furthermore,extremely high frequency band like mm Wave band was utilized to solve the bandwidth shortage problem.However,untra-dense reusing the same radio resource produced severe interference.And the mm Wave link was very harsh due to frequent blockage by obstacles.Therefore a new RAN architecture needed to be introduced to realize ultra-reliable communications in such a severe radio propagation environment.An architecture of distributed MIMO based RAN was presented.Then,enhanced interference coordination(e IC)was described.Finally,the effectiveness of distributed MIMO based RAN with e IC by computer simulation was showed.
基金supported by the National High-Tech R&D Program (863 Program2015AA01A705)in part by Beijing Municipal Commission of Education (The City's Vehicle Sensing Grid Construction Based on Public Transportation Network)
文摘This paper investigates on the base stations(BSs) sleeping control and energy saving in wireless network. The objective is to find the sleeping control and energy saving configuration between total power consumption and average video's quality. On the Software Defined Network(SDN) access network architecture, a type of sleeping control and active BSs' optimal transmitting time strategy is considered, the BS sleeps when there is no active users, and wakes up after a period of vacation time. In this paper, we study the active users grouping strategy, In order to spare more BSs into sleeping mode. Then this paper proposes an active BS transmitting time optimal strategy according to the users' Qo S. In the proposed strategy, the active BSs' transmitting time is minimized in order to save energy. This paper employs the mixed integer-programming model to present this optimization problem. Then we utilized a novel algorithm to save the energy in access networks and also meet the Qo S requirements. Both the analytical and simulation results show that the algorithm can effectively save energy in the access network BSs.
基金supported by JSPS KAKENHI Grant Number JP16K00117, JP19K20250KDDI Foundationthe China Scholarship Council (201808050016)
文摘The development of communication technologies which support traffic-intensive applications presents new challenges in designing a real-time traffic analysis architecture and an accurate method that suitable for a wide variety of traffic types.Current traffic analysis methods are executed on the cloud,which needs to upload the traffic data.Fog computing is a more promising way to save bandwidth resources by offloading these tasks to the fog nodes.However,traffic analysis models based on traditional machine learning need to retrain all traffic data when updating the trained model,which are not suitable for fog computing due to the poor computing power.In this study,we design a novel fog computing based traffic analysis system using broad learning.For one thing,fog computing can provide a distributed architecture for saving the bandwidth resources.For another,we use the broad learning to incrementally train the traffic data,which is more suitable for fog computing because it can support incremental updates of models without retraining all data.We implement our system on the Raspberry Pi,and experimental results show that we have a 98%probability to accurately identify these traffic data.Moreover,our method has a faster training speed compared with Convolutional Neural Network(CNN).
基金This work is supported in part by the US National Science Foundation under Grants CNS-1320664, and by the Wireless Engineering Research and Education Center (WEREC) at Auburn University, Aubur, AL, USA.
文摘Free Space Optical (FSO) networks, also known as optical wireless networks, have emerged as viable candidates for broadband wireless communications in the near future. The range of the potential application of FSO networks is extensive, from home to satellite. However, FSO networks have not been popularized because of insufficient availability and reliability. Researchers have focused on the problems in the physical layer in order to exploit the properties of wireless optical channels. However, recent technological developments with successful results make it practical to explore the advantages of the high bandwidth. Some researchers have begun to focus on the problems of network and upper layers in FSO networks. In this survey, we classify prospective global FSO networks into three subnetworks and give an account of them. We also present state-of- the-art research and discuss what kinds of challenges exist.
基金supported in part by the State Major Science and Technology Special Project(Grant No.2018ZX03001002)the National Natural Science Foundation of China under Grant No.61925101 and No.61831002+2 种基金the Beijing Natural Science Foundation under Grant No.JQ18016the National Program for Special Support of Eminent Professionalsthe Fundamental Research Funds for the Central Universities under Grant No.24820202020RC09 and Grant No.24820202020RC11。
文摘Network slicing based fog radio access network(F-RAN) has emerged as a promising architecture to support various novel applications in 5 G-and-beyond wireless networks. However, the co-existence of multiple network slices in F-RANs may lead to significant performance degradation due to the resource competitions among different network slices. In this paper, the downlink F-RANs with a hotspot slice and an Internet of Things(Io T) slice are considered, in which the user equipments(UEs) of different slices share the same spectrum. A novel joint resource allocation and admission control scheme is developed to maximize the number of UEs in the hotspot slice that can be supported with desired quality-of-service, while satisfying the interference constraint of the UEs in the Io T slice. Specifically, the admission control and beamforming vector optimization are performed in the hotspot slice to maximize the number of admitted UEs, while the joint sub-channel and power allocation is performed in the Io T slice to maximize the capability of the UEs in the Io T slice tolerating the interference from the hotspot slice. Numerical results show that our proposed scheme can effectively boost the number of UEs in the hotspot slice compared to the existing baselines.
基金supported by National Natural Science Foundation of China under Grant No.60971083National International Science and Technology Cooperation Project of China (No.2010DFA11320)
文摘This paper brings forward a novel dynamic multiple access network selection scheme(NDMAS),which could achieve less energy loss and improve the poor adaptive capability caused by the variable network parameters.Firstly,a multiple access network selection mathematical model based on information theory is presented.From the perspective of information theory,access selection is essentially a process to reduce the information entropy in the system.It can be found that the lower the information entropy is,the better the system performance fulfills.Therefore,this model is designed to reduce the information entropy by removing redundant parameters,and to avoid the computational cost as well.Secondly,for model implementation,the Principal Component Analysis(PCA) is employed to process the observation data to find out the related factors which affect the users most.As a result,the information entropy is decreased.Theoretical analysis proves that system loss and computational complexity have been decreased by using the proposed approach,while the network QoS and accuracy are guaranteed.Finally,simulation results show that our scheme achieves much better system performance in terms of packet delay,throughput and call blocking probability than other currently existing ones.
文摘This paper relates to an advanced open mobile communication system and method of integrating the mobile communications, wireless access systems and wired communications into one common platform architecture for China's 4th generation mobile communications, supporting costeffective broadband voice, data and video services in wireless, mobile and wired environment with one single integrated mobile terminal device. The paper includes new architecture in the integrated mobile device and converged network access, and minimum modifi cation in the existing mobile telecommunication infrastructures. This paper introduces the long-term evolution strategy for China's TDD system platform towards China's future 4G mobile communications.
文摘MORPAS is a special GIS (geographic information system) software system, based on the MAPGIS platform whose aim is to prospect and evaluate mineral resources quantificationally by synthesizing geological, geophysical, geochemical and remote sensing data. It overlays geological database management, geological background and geological abnormality analysis, image processing of remote sensing and comprehensive abnormality analysis, etc.. It puts forward an integrative solution for the application of GIS in basic-level units and the construction of information engineering in the geological field. As the popularization of computer networks and the request of data sharing, it is necessary to extend its functions in data management so that all its data files can be accessed in the network server. This paper utilizes some MAPGIS functions for the second development and ADO (access data object) technique to access multi-source geological data in SQL Server databases. Then remote visiting and congruous management will be realized in the MORPAS system.
文摘Using CSMA/CD for EPON can eliminate the augmentations, such as multi-point control protocol and point-to-point emulation, added to the existing 802.3 architecture due to the incompatibility of PON to Ethernet. Both full-duplex EPON system and half-duplex EPON system using CSMA/CD were proposed. In the full-duplex EPON, CSMA/CD is used as the upstream MAC protocol. In the half-duplex EPON system, both upstream and downstream traffic contend for the optical channel through CSMA/CD protocol. The upstream lightwave redirection and collision detection techniques were given. By the analysis and simulation, the throughput performance of the half-duplex EPON system is proven to be as well as that of the existing high speed half-duplex Ethernet LAN.
基金supported by the National Basic Research Program of China (973 Program)(No.2012CB315606 and 2010CB328201)
文摘To handle the handover challenge in Express Train Access Networks(ETAN).mobility fading effects in high speed railway environments should be addressed first.Based on the investigation of fading effects in this paper,we obtain two theoretical bounds:HOTiming upper bound and HO-Margin lower bound,which are helpful guidelines to study the handover challenge today and in the future.Then,we apply them to analyze performance of conventional handover technologies and our proposal in ETAN.This follow-up theory analyses and simulation experiment results demonstrate that the proposed handover solution can minimize handover time up to 4ms(which is the fastest one so far),and reduce HO-Margin to 0.16 dB at a train speed of 350km/h.
基金This research was supported by the MSIT(Ministry of Science and ICT),Korea,under the ITRC(Information Technology Research Center)support program(1ITP-2021-2017-0-01633)supervised by the IITP(Institute for Information&communications Technology Planning&Evaluation)This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2016R1D1A1B01016322).
文摘The installation of small cells in a 5G network extends the maximum coverage and provides high availability.However,this approach increases the handover overhead in the Core Network(CN)due to frequent handoffs.The variation of user density and movement inside a region of small cells also increases the handover overhead in CN.However,the present 5G system cannot reduce the handover overhead in CN under such circumstances because it relies on a traditionally rigid and complex hierarchical sequence for a handover procedure.Recently,Not Only Stack(NO Stack)architecture has been introduced for Radio Access Network(RAN)to reduce the signaling during handover.This paper proposes a system based on NO Stack architecture and solves the aforementioned problem by adding a dedicated local mobility controller to the edge cloud for each cluster.The dedicated cluster controller manages the user mobility locally inside a cluster and also maintains the forwarding data of a mobile user locally.To reduce the latency for X2-based handover requests,an edge cloud infrastructure has been also developed to provide high-computing for dedicated controllers at the edge of a cellular network.The proposed system is also compared with the traditional 3GPP architecture and other works in the context of overhead and delay caused by X2-based handover requests during user mobility.Simulated results show that the inclusion of a dedicated local controller for small clusters together with the implementation of NO Stack framework reduces the significant amount of overhead of X2-based handover requests at CN.
文摘Dynamic spectrum access technologies based on Cognitive Radio(CR) is under intensive research carried out by the wireless communication society and is expected to solve the problem of spectrum scarcity.However,most enabling technologies related to dynamic spectrum access are con-sidered individually.In this paper,we consider these key technologies jointly and introduce a new implementation scheme for a Dynamic Spectrum Access Network Based on Cognitive Radio(DSAN-BCR).We start with a flexible hardware platform for DSAN-BCR,as well as a flexible protocol structure that dominates the operation of DSAN-BCR.We then focus on the state of the art of key technologies such as spectrum sensing,spectrum resources management,dynamic spectrum access,and routing that are below the network layer in DSAN-BCR,as well as the development of technologies related to higher layers.Last but not the least,we analyze the challenges confronted by these men-tioned technologies in DSAN-BCR,and give the perspectives on the future development of these technologies.The DSAN-BCR introduced is expected to provide a system level guidance to alleviate the problem of spectrum scarcity.
基金Supported by the National Natural Science Foundation of China(No.61302080)Scientific Research Starting Foundation of Fuzhou University(No.022572)Science and Technology Development Foundation of Fuzhou University(No.2013-XY-27)
文摘High-speed train communication system is a typical high-mobility wireless communication network. Resource allocation problem has a great impact on the system performance. However, conventional resource allocation approaches in cellular network cannot be directly applied to this kind of special communication environment. A multidomain resource allocation strategy was proposed in the orthogonal frequency-division multiple access(OFDMA) of high-speed. By analyzing the effect of Doppler shift, sub-channels, antennas, time slots and power were jointly considered to maximize the energy efficiency under the constraint of total transmission power. For the purpose of reducing the computational complexity, noisy chaotic neural network algorithm was used to solve the above optimization problem. Simulation results showed that the proposed resource allocation method had a better performance than the traditional strategy.
基金supported by the key project of the National Natural Science Foundation of China(No.61431001)the 863 project No.2014AA01A701+4 种基金Program for New Century Excellent Talents in University(NECT12-0774)the open research fund of National Mobile Communications Research Laboratory Southeast University(No.2013D12)Fundamental Research Funds for the Central Universities(FRF-BD-15-012A)the Research Foundation of China Mobilethe Foundation of Beijing Engineering and Technology Center for Convergence Networks and Ubiquitous Services
文摘While operators have started deploying fourth generation(4G) wireless communication systems,which could provide up to1 Gbps downlink peak data rate,the improved system capacity is still insufficient to meet the drastically increasing demand of mobile users over the next decade.The main causes of the above-mentioned phenomenon include the following two aspects:1) the growth rate of the network capacity is far below that of user's demand,and 2) the relatively deterministic wireless access network(WAN) architecture in the existing systems cannot accommodate the prominent increase of mobile traffic with space-time domain dynamics.In order to address the above-mentioned challenges,we investigate the time-spatial consistency architecture for the future WAN,whilst emphasizing the critical roles of some spectral-efficient techniques such as Massive multiple-input multiple-output(MIMO),full-duplex(FD)operation and heterogeneous networks(HetNets).Furthermore,the energy efficiency(EE)of the HetNets under the proposed architecture is also evaluated,showing that the proposed user-selected uplink power control algorithm outperforms the traditional stochastic-scheduling strategy in terms of both capacity and EE in a two-tier HetNet.The other critical issues,including the tidal effect,the temporal failure owing to the instantaneously increased traffic,and the network wide load-balancing problem,etc.,are also anticipated to be addressed in the proposed architecture.(Abstract)