We investigate the stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks (MJFCNNs) with discrete, unbounded distributed delays, and the Wiener process based on sampled-d...We investigate the stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks (MJFCNNs) with discrete, unbounded distributed delays, and the Wiener process based on sampled-data control using the linear matrix inequality (LMI) approach. The Lyapunov–Krasovskii functional combined with the input delay approach as well as the free-weighting matrix approach is employed to derive several sufficient criteria in terms of LMIs to ensure that the delayed MJFCNNs with the Wiener process is stochastic asymptotical synchronous. Restrictions (e.g., time derivative is smaller than one) are removed to obtain a proposed sampled-data controller. Finally, a numerical example is provided to demonstrate the reliability of the derived results.展开更多
Recent emergence of diverse services have led to explosive traffic growth in cellular data networks. Understanding the service dynamics in large cellular networks is important for network design, trouble shooting, qua...Recent emergence of diverse services have led to explosive traffic growth in cellular data networks. Understanding the service dynamics in large cellular networks is important for network design, trouble shooting, quality of service(Qo E) support, and resource allocation. In this paper, we present our study to reveal the distributions and temporal patterns of different services in cellular data network from two different perspectives, namely service request times and service duration. Our study is based on big traffic data, which is parsed to readable records by our Hadoop-based packet parsing platform, captured over a week-long period from a tier-1 mobile operator's network in China. We propose a Zipf's ranked model to characterize the distributions of traffic volume, packet, request times and duration of cellular services. Two-stage method(Self-Organizing Map combined with kmeans) is first used to cluster time series of service into four request patterns and three duration patterns. These seven patterns are combined together to better understand the fine-grained temporal patterns of service in cellular network. Results of our distribution models and temporal patterns present cellular network operators with a better understanding of the request and duration characteristics of service, which of great importance in network design, service generation and resource allocation.展开更多
Tropospheric ozone concentrations, which are an important air pollutant, are modeled by the use of an artificial intelligence structure. Data obtained from air pollution measurement stations in the city of Istanbul ar...Tropospheric ozone concentrations, which are an important air pollutant, are modeled by the use of an artificial intelligence structure. Data obtained from air pollution measurement stations in the city of Istanbul are utilized in constituting the model. A supervised algorithm for the evaluation of ozone concentration using a genetically trained multi-level cellular neural network (ML-CNN) is introduced, developed, and applied to real data. A genetic algorithm is used in the optimization of CNN templates. The model results and the actual measurement results are compared and statistically evaluated. It is observed that seasonal changes in ozone concentrations are reflected effectively by the concentrations estimated by the multilevel-CNN model structure, with a correlation value of 0.57 ascertained between actual and model results. It is shown that the multilevel-CNN modeling technique is as satisfactory as other modeling techniques in associating the data in a complex medium in air pollution applications.展开更多
基金the Ministry of Science and Technology of India(Grant No.DST/Inspire Fellowship/2010/[293]/dt.18/03/2011)
文摘We investigate the stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks (MJFCNNs) with discrete, unbounded distributed delays, and the Wiener process based on sampled-data control using the linear matrix inequality (LMI) approach. The Lyapunov–Krasovskii functional combined with the input delay approach as well as the free-weighting matrix approach is employed to derive several sufficient criteria in terms of LMIs to ensure that the delayed MJFCNNs with the Wiener process is stochastic asymptotical synchronous. Restrictions (e.g., time derivative is smaller than one) are removed to obtain a proposed sampled-data controller. Finally, a numerical example is provided to demonstrate the reliability of the derived results.
基金supported by the National Basic Research Program of China (973 Program: 2013CB329004)
文摘Recent emergence of diverse services have led to explosive traffic growth in cellular data networks. Understanding the service dynamics in large cellular networks is important for network design, trouble shooting, quality of service(Qo E) support, and resource allocation. In this paper, we present our study to reveal the distributions and temporal patterns of different services in cellular data network from two different perspectives, namely service request times and service duration. Our study is based on big traffic data, which is parsed to readable records by our Hadoop-based packet parsing platform, captured over a week-long period from a tier-1 mobile operator's network in China. We propose a Zipf's ranked model to characterize the distributions of traffic volume, packet, request times and duration of cellular services. Two-stage method(Self-Organizing Map combined with kmeans) is first used to cluster time series of service into four request patterns and three duration patterns. These seven patterns are combined together to better understand the fine-grained temporal patterns of service in cellular network. Results of our distribution models and temporal patterns present cellular network operators with a better understanding of the request and duration characteristics of service, which of great importance in network design, service generation and resource allocation.
文摘Tropospheric ozone concentrations, which are an important air pollutant, are modeled by the use of an artificial intelligence structure. Data obtained from air pollution measurement stations in the city of Istanbul are utilized in constituting the model. A supervised algorithm for the evaluation of ozone concentration using a genetically trained multi-level cellular neural network (ML-CNN) is introduced, developed, and applied to real data. A genetic algorithm is used in the optimization of CNN templates. The model results and the actual measurement results are compared and statistically evaluated. It is observed that seasonal changes in ozone concentrations are reflected effectively by the concentrations estimated by the multilevel-CNN model structure, with a correlation value of 0.57 ascertained between actual and model results. It is shown that the multilevel-CNN modeling technique is as satisfactory as other modeling techniques in associating the data in a complex medium in air pollution applications.