NCW(network centric warfare) is an information warfare concentrating on network. A global network-centric warfare architecture with OGSA grid technology is put forward,which is a four levels system including the user ...NCW(network centric warfare) is an information warfare concentrating on network. A global network-centric warfare architecture with OGSA grid technology is put forward,which is a four levels system including the user level, the application level, the grid middleware layer and the resource level. In grid middleware layer,based on virtual hosting environment, a BEPL4WS grid service composition method is introduced. In addition, the NCW grid service model is built with the help of Eclipse-SDK-3.0.1 and Bpws4j.展开更多
The concept of network centric warfare (NCW) and the distributed equal-node network architecture in NCW are introduced in this paper. The data flow requirement model in NCW is presented. Based on synthetic analysis ...The concept of network centric warfare (NCW) and the distributed equal-node network architecture in NCW are introduced in this paper. The data flow requirement model in NCW is presented. Based on synthetic analysis of network resource, the QOS (Quality of Service) parameters and their characters, the high requirement of real-time synchronization in NCW, the single QOS routing constraint, and the network latency between the detector and weapon control station, are presented. To take an example for 3-node brigade (regiment) level NCW demonstration platform, the algorithm of end-to-end network latency and path information in NCW are presented. The algorithm program based on Server/Client architecture is developed. The optimal path is the link whose latency between the detector and weapon control station is the smallest. This paper solves the key issue and satisfies the needs on network latency in NCW. The study results can be widely applied in the decision of the optimal path which is based on multiple service provision points.展开更多
The concept of Network Centric Therapy represents an amalgamation of wearable and wireless inertial sensor systems and machine learning with access to a Cloud computing environment. The advent of Network Centric Thera...The concept of Network Centric Therapy represents an amalgamation of wearable and wireless inertial sensor systems and machine learning with access to a Cloud computing environment. The advent of Network Centric Therapy is highly relevant to the treatment of Parkinson’s disease through deep brain stimulation. Originally wearable and wireless systems for quantifying Parkinson’s disease involved the use a smartphone to quantify hand tremor. Although originally novel, the smartphone has notable issues as a wearable application for quantifying movement disorder tremor. The smartphone has evolved in a pathway that has made the smartphone progressively more cumbersome to mount about the dorsum of the hand. Furthermore, the smartphone utilizes an inertial sensor package that is not certified for medical analysis, and the trial data access a provisional Cloud computing environment through an email account. These concerns are resolved with the recent development of a conformal wearable and wireless inertial sensor system. This conformal wearable and wireless system mounts to the hand with the profile of a bandage by adhesive and accesses a secure Cloud computing environment through a segmented wireless connectivity strategy involving a smartphone and tablet. Additionally, the conformal wearable and wireless system is certified by the FDA of the United States of America for ascertaining medical grade inertial sensor data. These characteristics make the conformal wearable and wireless system uniquely suited for the quantification of Parkinson’s disease treatment through deep brain stimulation. Preliminary evaluation of the conformal wearable and wireless system is demonstrated through the differentiation of deep brain stimulation set to “On” and “Off” status. Based on the robustness of the acceleration signal, this signal was selected to quantify hand tremor for the prescribed deep brain stimulation settings. Machine learning classification using the Waikato Environment for Knowledge Analysis (WEKA) was applied using the multilayer perceptron neural network. The multilayer perceptron neural network achieved considerable classification accuracy for distinguishing between the deep brain stimulation system set to “On” and “Off” status through the quantified acceleration signal data obtained by this recently developed conformal wearable and wireless system. The research achievement establishes a progressive pathway to the future objective of achieving deep brain stimulation capabilities that promote closed-loop acquisition of configuration parameters that are uniquely optimized to the individual through extrinsic means of a highly conformal wearable and wireless inertial sensor system and machine learning with access to Cloud computing resources.展开更多
Wireless Ad Hoc Networks consist of devices that are wirelessly connected.Mobile Ad Hoc Networks(MANETs),Internet of Things(IoT),and Vehicular Ad Hoc Networks(VANETs)are the main domains of wireless ad hoc network.Int...Wireless Ad Hoc Networks consist of devices that are wirelessly connected.Mobile Ad Hoc Networks(MANETs),Internet of Things(IoT),and Vehicular Ad Hoc Networks(VANETs)are the main domains of wireless ad hoc network.Internet is used in wireless ad hoc network.Internet is based on Transmission Control Protocol(TCP)/Internet Protocol(IP)network where clients and servers interact with each other with the help of IP in a pre-defined environment.Internet fetches data from a fixed location.Data redundancy,mobility,and location dependency are the main issues of the IP network paradigm.All these factors result in poor performance of wireless ad hoc networks.The main disadvantage of IP is that,it does not provide in-network caching.Therefore,there is a need to move towards a new network that overcomes these limitations.Named Data Network(NDN)is a network that overcomes these limitations.NDN is a project of Information-centric Network(ICN).NDN provides in-network caching which helps in fast response to user queries.Implementing NDN in wireless ad hoc network provides many benefits such as caching,mobility,scalability,security,and privacy.By considering the certainty,in this survey paper,we present a comprehensive survey on Caching Strategies in NDN-based Wireless AdHocNetwork.Various cachingmechanism-based results are also described.In the last,we also shed light on the challenges and future directions of this promising field to provide a clear understanding of what caching-related problems exist in NDN-based wireless ad hoc networks.展开更多
As a named data-based clean-slate future Internet architecture,Content-Centric Networking(CCN)uses entirely different protocols and communication patterns from the host-to-host IP network.In CCN,communication is wholl...As a named data-based clean-slate future Internet architecture,Content-Centric Networking(CCN)uses entirely different protocols and communication patterns from the host-to-host IP network.In CCN,communication is wholly driven by the data consumer.Consumers must send Interest packets with the content name and not by the host’s network address.Its nature of in-network caching,Interest packets aggregation and hop-byhop communication poses unique challenges to provision of Internet applications,where traditional IP network no long works well.This paper presents a comprehensive survey of state-of-the-art application research activities related to CCN architecture.Our main aims in this survey are(a)to identify the advantages and drawbacks of CCN architectures for application provisioning;(b)to discuss the challenges and opportunities regarding service provisioning in CCN architectures;and(c)to further encourage deeper thinking about design principles for future Internet architectures from the perspective of upper-layer applications.展开更多
Information-centric networking(ICN) aims to improve the efficiency of content delivery and reduce the redundancy of data transmission by caching contents in network nodes. An important issue is to design caching metho...Information-centric networking(ICN) aims to improve the efficiency of content delivery and reduce the redundancy of data transmission by caching contents in network nodes. An important issue is to design caching methods with better cache hit rate and achieve allocating on-demand. Therefore, an in-network caching scheduling scheme for ICN was designed, distinguishing different kinds of contents and dynamically allocating the cache size on-demand. First discussing what was appropriated to be cached in nodes, and then a classification about the contents could be cached was proposed. Furthermore, we used AHP to weight different contents classes through analyzing users' behavior. And a distributed control process was built, to achieve differentiated caching resource allocation and management. The designed scheme not only avoids the waste of caching resource, but also further enhances the cache availability. Finally, the simulation results are illustrated to show that our method has the superior performance in the aspects of server hit rate and convergence.展开更多
Recently the content centric networks(CCNs) have been advocated as a new solution to design future networks. In the CCNs, content and its interest are delivered over the content store and pending interest table, respe...Recently the content centric networks(CCNs) have been advocated as a new solution to design future networks. In the CCNs, content and its interest are delivered over the content store and pending interest table, respectively, where both have limited capacities. Therefore, how to design the corresponding algorithms to efficiently deliver content and inertest over them becomes an important issue. In this paper, based on the analysis of content distribution, status of content store, and pending interest, we propose a novel caching algorithm with which the resources of content store and pending interest table can be efficiently used. Simulation results prove that the proposal can outperform the conventional methods.展开更多
Information centric networking(ICN) is a new network architecture that is centred on accessing content. It aims to solve some of the problems associated with IP networks, increasing content distribution capability and...Information centric networking(ICN) is a new network architecture that is centred on accessing content. It aims to solve some of the problems associated with IP networks, increasing content distribution capability and improving users' experience. To analyse the requests' patterns and fully utilize the universal cached contents, a novel intelligent resources management system is proposed, which enables effi cient cache resource allocation in real time, based on changing user demand patterns. The system is composed of two parts. The fi rst part is a fi ne-grain traffi c estimation algorithm called Temporal Poisson traffi c prediction(TP2) that aims at analysing the traffi c pattern(or aggregated user requests' demands) for different contents. The second part is a collaborative cache placement algorithm that is based on traffic estimated by TP2. The experimental results show that TP2 has better performance than other comparable traffi c prediction algorithms and the proposed intelligent system can increase the utilization of cache resources and improve the network capacity.展开更多
Massive information flows are gen- erated from interactive processing and visua- lizations. To efficiently support information transmission over the Interact, information cen- tric architecture has been recently propo...Massive information flows are gen- erated from interactive processing and visua- lizations. To efficiently support information transmission over the Interact, information cen- tric architecture has been recently proposed. In this paper, we consider an information centric architecture, called the data centric networking architecture to provide communication servi- ces to big data, where a service identifier is used to name the data objects. We propose dif- ferent approaches for the dissemination of data objects in a large-scale data centric network. In particular, we propose various approaches to link the data dissemination approach with the topology of the Internet. Further, we eva- luate the proposed approaches with respect to data delivery efficiency, round-trip time imp- rovement, and deployment cost. Based on the results obtained from this study, it can be sh- own that by disseminating data objects to small ISPs, the data delivery efficiency can be significantly improved within an acceptable deployment cost.展开更多
The information centric network(ICN)has been widely discussed in current researches.The ICN interoperation with a traditional IP network and caching methods are one of the research topics of interest.For economic reas...The information centric network(ICN)has been widely discussed in current researches.The ICN interoperation with a traditional IP network and caching methods are one of the research topics of interest.For economic reasons,the capability of applying the ICN to internet service providers(ISPs)with various traditional IP protocols already implemented,especially IGP,MPLS,VRF,and TE,does not require any change on the IP network infrastructure.The biggest concern of ISPs is related to their customers’contents delivery speed.In this paper,we consider ICN caching locations in ISP by using the concept of locator/ID separation protocol(LISP)for interoperation between a traditional IP address and name-based ICN.To be more specific,we propose a new procedure to determine caching locations in the ICN by using the cuckoo search algorithm(CSA)for finding the best caching locations of information chunks.Moreover,we create the smart control plane(SCP)scheme which is an intelligent controlling,managing,and mapping system.Its function is similar to the software defined network concept.We show how the proposed SCP system works in both synthetic small network and real-world big network.Finally,we show and evaluate the performance of our algorithm comparison with the simple search method using the shortest path first algorithm.展开更多
Content-centric Networking(CCN) is progressively flattering the substitutable approach to the Internet architecture through illuminating information(content) dissemination on the Internet with content forenames.The em...Content-centric Networking(CCN) is progressively flattering the substitutable approach to the Internet architecture through illuminating information(content) dissemination on the Internet with content forenames.The emergent proportion of Internet circulation has expectant adjusting Content-centric architecture to enhance serve the user prerequisites of accessing content.In recent years,one of the key aspects of CCN is ubiquitous in-network caching,which has been widely received great attention in research interest.One foremost shortcoming of in-network caching is that content producers have no awareness about where their content is put in storage.Because routers in CCN have caching capabilities,therefore,each and every content router can cache the content item in its storage capacity.This is problematic in the case in which a producer wishes to update or make the changes in its content item.In this paper,we present an approach regarding how to address this issue with a scheme called efficient content update(ECU).Our proposed ECU scheme achieves content update via trifling packets that resemble contemporary CCN communication messages with the use of additional table.We measure the performance of ECU scheme by means of simulations and make available a comprehensive exploration of its results.展开更多
There were two strategies for the data forwarding in the content-centric networking(CCN): forwarding strategy and routing strategy. Forwarding strategy only considered a separated node rather than the whole network pe...There were two strategies for the data forwarding in the content-centric networking(CCN): forwarding strategy and routing strategy. Forwarding strategy only considered a separated node rather than the whole network performance, and Interest flooding led to the network overhead and redundancy as well. As for routing strategy in CCN, each node was required to run the protocol. It was a waste of routing cost and unfit for large-scale deployment.This paper presents the super node routing strategy in CCN. Some super nodes selected from the peer nodes in CCN were used to receive the routing information from their slave nodes and compute the face-to-path to establish forwarding information base(FIB). Then FIB was sent to slave nodes to control and manage the slave nodes. The theoretical analysis showed that the super node routing strategy possessed robustness and scalability, achieved load balancing,reduced the redundancy and improved the network performance. In three topologies, three experiments were carried out to test the super node routing strategy. Network performance results showed that the proposed strategy had a shorter delay, lower CPU utilization and less redundancy compared with CCN.展开更多
The recent evolution of the Internet towards "Information-centric" transfer modes has renewed the interest in exploiting proxies to enhance seamless mobility. In this work, we focus on the case of multiple l...The recent evolution of the Internet towards "Information-centric" transfer modes has renewed the interest in exploiting proxies to enhance seamless mobility. In this work, we focus on the case of multiple levels of proxies in ICN architectures, in which content requests from mobile subscribers and the corresponding items are proactively cached to these proxies at different levels. Specifically, we present a multiple-level proactive caching model that selects the appropriate subset of proxies at different levels and supports distributed online decision procedures in terms of the tradeoff between delay and cache cost. We show via extensive simulations the reduction of up to 31.63% in the total cost relative to Full Caching, in which caching in all 1-level neighbor proxies is performed, and up to 84.21% relative to No Caching, in which no caching is used. Moreover, the proposed model outperforms other approaches with a flat cache structure in terms of the total cost.展开更多
The current Internet is based on host-centric networking, and a user needs to know the host address before reaching a data target in the network. The new architecture of information-centric networking (ICN) facilitate...The current Internet is based on host-centric networking, and a user needs to know the host address before reaching a data target in the network. The new architecture of information-centric networking (ICN) facilitates users to locate data targets by giving their data names without any information about host addresses. In-network caching is one of the prominent features in ICN, which allows network routers to cache data contents. In this paper, we emphasize the management of in-network cache storage, and this includes the mechanisms of cache replacement and cache replication. A new cost function is then proposed to evaluate each cache content and the least valuable content is evicted when cache is full. To increase cache utilization, a cooperative caching policy among neighboring routers is proposed. The proper network locations to cache data contents are also discussed in the paper. Experimental results show the superiority of the proposed caching policy than some traditional caching polices.展开更多
In this paper, we explore network architecture anal key technologies for content-centric networking (CCN), an emerging networking technology in the big-data era. We descrihe the structure anti operation mechanism of...In this paper, we explore network architecture anal key technologies for content-centric networking (CCN), an emerging networking technology in the big-data era. We descrihe the structure anti operation mechanism of tl CCN node. Then we discuss mobility management, routing strategy, and caching policy in CCN. For better network performance, we propose a probability cache replacement policy that is based on cotent popularity. We also propose and evaluate a probability cache with evicted copy-up decision policy.展开更多
In Information Centric Networking(ICN)where content is the object of exchange,in-network caching is a unique functional feature with the ability to handle data storage and distribution in remote sensing satellite netw...In Information Centric Networking(ICN)where content is the object of exchange,in-network caching is a unique functional feature with the ability to handle data storage and distribution in remote sensing satellite networks.Setting up cache space at any node enables users to access data nearby,thus relieving the processing pressure on the servers.However,the existing caching strategies still suffer from the lack of global planning of cache contents and low utilization of cache resources due to the lack of fine-grained division of cache contents.To address the issues mentioned,a cooperative caching strategy(CSTL)for remote sensing satellite networks based on a two-layer caching model is proposed.The two-layer caching model is constructed by setting up separate cache spaces in the satellite network and the ground station.Probabilistic caching of popular contents in the region at the ground station to reduce the access delay of users.A content classification method based on hierarchical division is proposed in the satellite network,and differential probabilistic caching is employed for different levels of content.The cached content is also dynamically adjusted by analyzing the subsequent changes in the popularity of the cached content.In the two-layer caching model,ground stations and satellite networks collaboratively cache to achieve global planning of cache contents,rationalize the utilization of cache resources,and reduce the propagation delay of remote sensing data.Simulation results show that the CSTL strategy not only has a high cache hit ratio compared with other caching strategies but also effectively reduces user request delay and server load,which satisfies the timeliness requirement of remote sensing data transmission.展开更多
文摘NCW(network centric warfare) is an information warfare concentrating on network. A global network-centric warfare architecture with OGSA grid technology is put forward,which is a four levels system including the user level, the application level, the grid middleware layer and the resource level. In grid middleware layer,based on virtual hosting environment, a BEPL4WS grid service composition method is introduced. In addition, the NCW grid service model is built with the help of Eclipse-SDK-3.0.1 and Bpws4j.
文摘The concept of network centric warfare (NCW) and the distributed equal-node network architecture in NCW are introduced in this paper. The data flow requirement model in NCW is presented. Based on synthetic analysis of network resource, the QOS (Quality of Service) parameters and their characters, the high requirement of real-time synchronization in NCW, the single QOS routing constraint, and the network latency between the detector and weapon control station, are presented. To take an example for 3-node brigade (regiment) level NCW demonstration platform, the algorithm of end-to-end network latency and path information in NCW are presented. The algorithm program based on Server/Client architecture is developed. The optimal path is the link whose latency between the detector and weapon control station is the smallest. This paper solves the key issue and satisfies the needs on network latency in NCW. The study results can be widely applied in the decision of the optimal path which is based on multiple service provision points.
文摘The concept of Network Centric Therapy represents an amalgamation of wearable and wireless inertial sensor systems and machine learning with access to a Cloud computing environment. The advent of Network Centric Therapy is highly relevant to the treatment of Parkinson’s disease through deep brain stimulation. Originally wearable and wireless systems for quantifying Parkinson’s disease involved the use a smartphone to quantify hand tremor. Although originally novel, the smartphone has notable issues as a wearable application for quantifying movement disorder tremor. The smartphone has evolved in a pathway that has made the smartphone progressively more cumbersome to mount about the dorsum of the hand. Furthermore, the smartphone utilizes an inertial sensor package that is not certified for medical analysis, and the trial data access a provisional Cloud computing environment through an email account. These concerns are resolved with the recent development of a conformal wearable and wireless inertial sensor system. This conformal wearable and wireless system mounts to the hand with the profile of a bandage by adhesive and accesses a secure Cloud computing environment through a segmented wireless connectivity strategy involving a smartphone and tablet. Additionally, the conformal wearable and wireless system is certified by the FDA of the United States of America for ascertaining medical grade inertial sensor data. These characteristics make the conformal wearable and wireless system uniquely suited for the quantification of Parkinson’s disease treatment through deep brain stimulation. Preliminary evaluation of the conformal wearable and wireless system is demonstrated through the differentiation of deep brain stimulation set to “On” and “Off” status. Based on the robustness of the acceleration signal, this signal was selected to quantify hand tremor for the prescribed deep brain stimulation settings. Machine learning classification using the Waikato Environment for Knowledge Analysis (WEKA) was applied using the multilayer perceptron neural network. The multilayer perceptron neural network achieved considerable classification accuracy for distinguishing between the deep brain stimulation system set to “On” and “Off” status through the quantified acceleration signal data obtained by this recently developed conformal wearable and wireless system. The research achievement establishes a progressive pathway to the future objective of achieving deep brain stimulation capabilities that promote closed-loop acquisition of configuration parameters that are uniquely optimized to the individual through extrinsic means of a highly conformal wearable and wireless inertial sensor system and machine learning with access to Cloud computing resources.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2022R1A2C1003549).
文摘Wireless Ad Hoc Networks consist of devices that are wirelessly connected.Mobile Ad Hoc Networks(MANETs),Internet of Things(IoT),and Vehicular Ad Hoc Networks(VANETs)are the main domains of wireless ad hoc network.Internet is used in wireless ad hoc network.Internet is based on Transmission Control Protocol(TCP)/Internet Protocol(IP)network where clients and servers interact with each other with the help of IP in a pre-defined environment.Internet fetches data from a fixed location.Data redundancy,mobility,and location dependency are the main issues of the IP network paradigm.All these factors result in poor performance of wireless ad hoc networks.The main disadvantage of IP is that,it does not provide in-network caching.Therefore,there is a need to move towards a new network that overcomes these limitations.Named Data Network(NDN)is a network that overcomes these limitations.NDN is a project of Information-centric Network(ICN).NDN provides in-network caching which helps in fast response to user queries.Implementing NDN in wireless ad hoc network provides many benefits such as caching,mobility,scalability,security,and privacy.By considering the certainty,in this survey paper,we present a comprehensive survey on Caching Strategies in NDN-based Wireless AdHocNetwork.Various cachingmechanism-based results are also described.In the last,we also shed light on the challenges and future directions of this promising field to provide a clear understanding of what caching-related problems exist in NDN-based wireless ad hoc networks.
基金supported in part by the National Natural Science Foundation of China (NSFC) under Grant 61671081in part by the Funds for International Cooperation and Exchange of NSFC under Grant 61720106007+2 种基金in part by the 111 Project under Grant B18008in part by the Beijing Natural Science Foundation under Grant 4172042in part by the Fundamental Research Funds for the Central Universities under Grant 2018XKJC01
文摘As a named data-based clean-slate future Internet architecture,Content-Centric Networking(CCN)uses entirely different protocols and communication patterns from the host-to-host IP network.In CCN,communication is wholly driven by the data consumer.Consumers must send Interest packets with the content name and not by the host’s network address.Its nature of in-network caching,Interest packets aggregation and hop-byhop communication poses unique challenges to provision of Internet applications,where traditional IP network no long works well.This paper presents a comprehensive survey of state-of-the-art application research activities related to CCN architecture.Our main aims in this survey are(a)to identify the advantages and drawbacks of CCN architectures for application provisioning;(b)to discuss the challenges and opportunities regarding service provisioning in CCN architectures;and(c)to further encourage deeper thinking about design principles for future Internet architectures from the perspective of upper-layer applications.
基金supported in part by The National High Technology Research and Development Program of China (863 Program) under Grant No. 2015AA016101The National Natural Science Foundation of China under Grant No. 61501042+1 种基金Beijing Nova Program under Grant No. Z151100000315078BUPT Special Program for Youth Scientific Research Innovation under Grant No. 2015RC10
文摘Information-centric networking(ICN) aims to improve the efficiency of content delivery and reduce the redundancy of data transmission by caching contents in network nodes. An important issue is to design caching methods with better cache hit rate and achieve allocating on-demand. Therefore, an in-network caching scheduling scheme for ICN was designed, distinguishing different kinds of contents and dynamically allocating the cache size on-demand. First discussing what was appropriated to be cached in nodes, and then a classification about the contents could be cached was proposed. Furthermore, we used AHP to weight different contents classes through analyzing users' behavior. And a distributed control process was built, to achieve differentiated caching resource allocation and management. The designed scheme not only avoids the waste of caching resource, but also further enhances the cache availability. Finally, the simulation results are illustrated to show that our method has the superior performance in the aspects of server hit rate and convergence.
基金supported in part by the fundamental key research project of Shanghai Municipal Science and Technology Commission under grant 12JC1404201the Ministry of Education Research Fund-China Mobile(2012) MCM20121032
文摘Recently the content centric networks(CCNs) have been advocated as a new solution to design future networks. In the CCNs, content and its interest are delivered over the content store and pending interest table, respectively, where both have limited capacities. Therefore, how to design the corresponding algorithms to efficiently deliver content and inertest over them becomes an important issue. In this paper, based on the analysis of content distribution, status of content store, and pending interest, we propose a novel caching algorithm with which the resources of content store and pending interest table can be efficiently used. Simulation results prove that the proposal can outperform the conventional methods.
基金supported by the National High Technology Research and Development Program(863)of China(No.2015AA016101)the National Natural Science Fund(No.61300184)Beijing Nova Program(No.Z151100000315078)
文摘Information centric networking(ICN) is a new network architecture that is centred on accessing content. It aims to solve some of the problems associated with IP networks, increasing content distribution capability and improving users' experience. To analyse the requests' patterns and fully utilize the universal cached contents, a novel intelligent resources management system is proposed, which enables effi cient cache resource allocation in real time, based on changing user demand patterns. The system is composed of two parts. The fi rst part is a fi ne-grain traffi c estimation algorithm called Temporal Poisson traffi c prediction(TP2) that aims at analysing the traffi c pattern(or aggregated user requests' demands) for different contents. The second part is a collaborative cache placement algorithm that is based on traffic estimated by TP2. The experimental results show that TP2 has better performance than other comparable traffi c prediction algorithms and the proposed intelligent system can increase the utilization of cache resources and improve the network capacity.
基金supported by the National Science and Technology Major Projects of the Ministry of Science and Technology of China under Grant No.2012ZX03005003the State Key Program of National Natural Science of China under Grant No.61232017+3 种基金the National Basic Research Program of China(973 Program)under Grant No.2013CB329101the National Natural Science Foundation of China under Grants No.61102049,No.61271202the Beijing Natural Science Foundation underGrants No.4132053,No.4122060the Scientific Research Foundation of the Returned Overseas Chinese Scholars of State Education Ministry under Grant No.W13C300010
文摘Massive information flows are gen- erated from interactive processing and visua- lizations. To efficiently support information transmission over the Interact, information cen- tric architecture has been recently proposed. In this paper, we consider an information centric architecture, called the data centric networking architecture to provide communication servi- ces to big data, where a service identifier is used to name the data objects. We propose dif- ferent approaches for the dissemination of data objects in a large-scale data centric network. In particular, we propose various approaches to link the data dissemination approach with the topology of the Internet. Further, we eva- luate the proposed approaches with respect to data delivery efficiency, round-trip time imp- rovement, and deployment cost. Based on the results obtained from this study, it can be sh- own that by disseminating data objects to small ISPs, the data delivery efficiency can be significantly improved within an acceptable deployment cost.
文摘The information centric network(ICN)has been widely discussed in current researches.The ICN interoperation with a traditional IP network and caching methods are one of the research topics of interest.For economic reasons,the capability of applying the ICN to internet service providers(ISPs)with various traditional IP protocols already implemented,especially IGP,MPLS,VRF,and TE,does not require any change on the IP network infrastructure.The biggest concern of ISPs is related to their customers’contents delivery speed.In this paper,we consider ICN caching locations in ISP by using the concept of locator/ID separation protocol(LISP)for interoperation between a traditional IP address and name-based ICN.To be more specific,we propose a new procedure to determine caching locations in the ICN by using the cuckoo search algorithm(CSA)for finding the best caching locations of information chunks.Moreover,we create the smart control plane(SCP)scheme which is an intelligent controlling,managing,and mapping system.Its function is similar to the software defined network concept.We show how the proposed SCP system works in both synthetic small network and real-world big network.Finally,we show and evaluate the performance of our algorithm comparison with the simple search method using the shortest path first algorithm.
文摘Content-centric Networking(CCN) is progressively flattering the substitutable approach to the Internet architecture through illuminating information(content) dissemination on the Internet with content forenames.The emergent proportion of Internet circulation has expectant adjusting Content-centric architecture to enhance serve the user prerequisites of accessing content.In recent years,one of the key aspects of CCN is ubiquitous in-network caching,which has been widely received great attention in research interest.One foremost shortcoming of in-network caching is that content producers have no awareness about where their content is put in storage.Because routers in CCN have caching capabilities,therefore,each and every content router can cache the content item in its storage capacity.This is problematic in the case in which a producer wishes to update or make the changes in its content item.In this paper,we present an approach regarding how to address this issue with a scheme called efficient content update(ECU).Our proposed ECU scheme achieves content update via trifling packets that resemble contemporary CCN communication messages with the use of additional table.We measure the performance of ECU scheme by means of simulations and make available a comprehensive exploration of its results.
基金Supported by the National Basic Research Program of China("973"Program,No.2013CB329100)Beijing Higher Education Young Elite Teacher Project(No.YETP0534)
文摘There were two strategies for the data forwarding in the content-centric networking(CCN): forwarding strategy and routing strategy. Forwarding strategy only considered a separated node rather than the whole network performance, and Interest flooding led to the network overhead and redundancy as well. As for routing strategy in CCN, each node was required to run the protocol. It was a waste of routing cost and unfit for large-scale deployment.This paper presents the super node routing strategy in CCN. Some super nodes selected from the peer nodes in CCN were used to receive the routing information from their slave nodes and compute the face-to-path to establish forwarding information base(FIB). Then FIB was sent to slave nodes to control and manage the slave nodes. The theoretical analysis showed that the super node routing strategy possessed robustness and scalability, achieved load balancing,reduced the redundancy and improved the network performance. In three topologies, three experiments were carried out to test the super node routing strategy. Network performance results showed that the proposed strategy had a shorter delay, lower CPU utilization and less redundancy compared with CCN.
基金supported by National Natural Science Foundation of China (Grant Nos. 61302078 and 61372108)National High-tech R&D Program of China (863 Program) (Grant Nos. 2011AA01A102)+1 种基金National S&T Major Project (Grant Nos. 2011ZX 03005-004-02)Beijing Higher Education Young Elite Teacher Project (Grant Nos. YETP0476)
文摘The recent evolution of the Internet towards "Information-centric" transfer modes has renewed the interest in exploiting proxies to enhance seamless mobility. In this work, we focus on the case of multiple levels of proxies in ICN architectures, in which content requests from mobile subscribers and the corresponding items are proactively cached to these proxies at different levels. Specifically, we present a multiple-level proactive caching model that selects the appropriate subset of proxies at different levels and supports distributed online decision procedures in terms of the tradeoff between delay and cache cost. We show via extensive simulations the reduction of up to 31.63% in the total cost relative to Full Caching, in which caching in all 1-level neighbor proxies is performed, and up to 84.21% relative to No Caching, in which no caching is used. Moreover, the proposed model outperforms other approaches with a flat cache structure in terms of the total cost.
文摘The current Internet is based on host-centric networking, and a user needs to know the host address before reaching a data target in the network. The new architecture of information-centric networking (ICN) facilitates users to locate data targets by giving their data names without any information about host addresses. In-network caching is one of the prominent features in ICN, which allows network routers to cache data contents. In this paper, we emphasize the management of in-network cache storage, and this includes the mechanisms of cache replacement and cache replication. A new cost function is then proposed to evaluate each cache content and the least valuable content is evicted when cache is full. To increase cache utilization, a cooperative caching policy among neighboring routers is proposed. The proper network locations to cache data contents are also discussed in the paper. Experimental results show the superiority of the proposed caching policy than some traditional caching polices.
基金supported by National Natural Science Foundation of China under Grant No.60872018 and No. 60902015Major National Science and Technology Project No. 2011ZX03005-004-03
文摘In this paper, we explore network architecture anal key technologies for content-centric networking (CCN), an emerging networking technology in the big-data era. We descrihe the structure anti operation mechanism of tl CCN node. Then we discuss mobility management, routing strategy, and caching policy in CCN. For better network performance, we propose a probability cache replacement policy that is based on cotent popularity. We also propose and evaluate a probability cache with evicted copy-up decision policy.
基金This research was funded by the National Natural Science Foundation of China(No.U21A20451)the Science and Technology Planning Project of Jilin Province(No.20200401105GX)the China University Industry University Research Innovation Fund(No.2021FNA01003).
文摘In Information Centric Networking(ICN)where content is the object of exchange,in-network caching is a unique functional feature with the ability to handle data storage and distribution in remote sensing satellite networks.Setting up cache space at any node enables users to access data nearby,thus relieving the processing pressure on the servers.However,the existing caching strategies still suffer from the lack of global planning of cache contents and low utilization of cache resources due to the lack of fine-grained division of cache contents.To address the issues mentioned,a cooperative caching strategy(CSTL)for remote sensing satellite networks based on a two-layer caching model is proposed.The two-layer caching model is constructed by setting up separate cache spaces in the satellite network and the ground station.Probabilistic caching of popular contents in the region at the ground station to reduce the access delay of users.A content classification method based on hierarchical division is proposed in the satellite network,and differential probabilistic caching is employed for different levels of content.The cached content is also dynamically adjusted by analyzing the subsequent changes in the popularity of the cached content.In the two-layer caching model,ground stations and satellite networks collaboratively cache to achieve global planning of cache contents,rationalize the utilization of cache resources,and reduce the propagation delay of remote sensing data.Simulation results show that the CSTL strategy not only has a high cache hit ratio compared with other caching strategies but also effectively reduces user request delay and server load,which satisfies the timeliness requirement of remote sensing data transmission.