With the increasingly fierce market competition,manufacturing enterprises have to continuously improve their competitiveness through their collaboration and labor division with each other,i.e.forming manufacturing ent...With the increasingly fierce market competition,manufacturing enterprises have to continuously improve their competitiveness through their collaboration and labor division with each other,i.e.forming manufacturing enterprise collaborative network(MECN)through their collaboration and labor division is an effective guarantee for obtaining competitive advantages.To explore the topology and evolutionary process of MECN,in this paper we investigate an empirical MECN from the viewpoint of complex network theory,and construct an evolutionary model to reproduce the topological properties found in the empirical network.Firstly,large-size empirical data related to the automotive industry are collected to construct an MECN.Topological analysis indicates that the MECN is not a scale-free network,but a small-world network with disassortativity.Small-world property indicates that the enterprises can respond quickly to the market,but disassortativity shows the risk spreading is fast and the coordinated operation is difficult.Then,an evolutionary model based on fitness preferential attachment and entropy-TOPSIS is proposed to capture the features of MECN.Besides,the evolutionary model is compared with a degree-based model in which only node degree is taken into consideration.The simulation results show the proposed evolutionary model can reproduce a number of critical topological properties of empirical MECN,while the degree-based model does not,which validates the effectiveness of the proposed evolutionary model.展开更多
Blockchain technology is considered one of the promising technologies of the information technology era.The core features of blockchain,such as decentralization,transparency,high security,and tamper-proof nature,bring...Blockchain technology is considered one of the promising technologies of the information technology era.The core features of blockchain,such as decentralization,transparency,high security,and tamper-proof nature,bring great convenience for large-scale social cooperation and data sharing.Blockchain has a broad application prospect in the field of intelligent manufacturing.The key issues of this field,such as distributed collaborative production,industrial big data sharing and security,transparent logistics,and supply chain,are naturally consistent with the core characteristics of the blockchain technology.This study aims to analyze the application of blockchain in the field of intelligent manufacturing.First,we introduce the basic connotation and applications of blockchain.Then,we propose the theoretical basis for the application of blockchain in the field of intelligent manufacturing.Finally,we point out the realistic plights and provide some suggestions to promote the application of blockchain in the field of intelligent manufacturing.展开更多
基金the National Natural Science Foundation of China(Grant Nos.51475347 and 51875429).
文摘With the increasingly fierce market competition,manufacturing enterprises have to continuously improve their competitiveness through their collaboration and labor division with each other,i.e.forming manufacturing enterprise collaborative network(MECN)through their collaboration and labor division is an effective guarantee for obtaining competitive advantages.To explore the topology and evolutionary process of MECN,in this paper we investigate an empirical MECN from the viewpoint of complex network theory,and construct an evolutionary model to reproduce the topological properties found in the empirical network.Firstly,large-size empirical data related to the automotive industry are collected to construct an MECN.Topological analysis indicates that the MECN is not a scale-free network,but a small-world network with disassortativity.Small-world property indicates that the enterprises can respond quickly to the market,but disassortativity shows the risk spreading is fast and the coordinated operation is difficult.Then,an evolutionary model based on fitness preferential attachment and entropy-TOPSIS is proposed to capture the features of MECN.Besides,the evolutionary model is compared with a degree-based model in which only node degree is taken into consideration.The simulation results show the proposed evolutionary model can reproduce a number of critical topological properties of empirical MECN,while the degree-based model does not,which validates the effectiveness of the proposed evolutionary model.
基金the National Natural Science Foundation of China(Grant Nos.71690230,71690235,and 71501055).
文摘Blockchain technology is considered one of the promising technologies of the information technology era.The core features of blockchain,such as decentralization,transparency,high security,and tamper-proof nature,bring great convenience for large-scale social cooperation and data sharing.Blockchain has a broad application prospect in the field of intelligent manufacturing.The key issues of this field,such as distributed collaborative production,industrial big data sharing and security,transparent logistics,and supply chain,are naturally consistent with the core characteristics of the blockchain technology.This study aims to analyze the application of blockchain in the field of intelligent manufacturing.First,we introduce the basic connotation and applications of blockchain.Then,we propose the theoretical basis for the application of blockchain in the field of intelligent manufacturing.Finally,we point out the realistic plights and provide some suggestions to promote the application of blockchain in the field of intelligent manufacturing.