As 5th Generation(5G)and Beyond 5G(B5G)networks become increasingly prevalent,ensuring not only networksecurity but also the security and reliability of the applications,the so-called network applications,becomesof pa...As 5th Generation(5G)and Beyond 5G(B5G)networks become increasingly prevalent,ensuring not only networksecurity but also the security and reliability of the applications,the so-called network applications,becomesof paramount importance.This paper introduces a novel integrated model architecture,combining a networkapplication validation framework with an AI-driven reactive system to enhance security in real-time.The proposedmodel leverages machine learning(ML)and artificial intelligence(AI)to dynamically monitor and respond tosecurity threats,effectively mitigating potential risks before they impact the network infrastructure.This dualapproach not only validates the functionality and performance of network applications before their real deploymentbut also enhances the network’s ability to adapt and respond to threats as they arise.The implementation ofthis model,in the shape of an architecture deployed in two distinct sites,demonstrates its practical viability andeffectiveness.Integrating application validation with proactive threat detection and response,the proposed modeladdresses critical security challenges unique to 5G infrastructures.This paper details the model,architecture’sdesign,implementation,and evaluation of this solution,illustrating its potential to improve network securitymanagement in 5G environments significantly.Our findings highlight the architecture’s capability to ensure boththe operational integrity of network applications and the security of the underlying infrastructure,presenting asignificant advancement in network security.展开更多
This study describes improving network security by implementing and assessing an intrusion detection system(IDS)based on deep neural networks(DNNs).The paper investigates contemporary technical ways for enhancing intr...This study describes improving network security by implementing and assessing an intrusion detection system(IDS)based on deep neural networks(DNNs).The paper investigates contemporary technical ways for enhancing intrusion detection performance,given the vital relevance of safeguarding computer networks against harmful activity.The DNN-based IDS is trained and validated by the model using the NSL-KDD dataset,a popular benchmark for IDS research.The model performs well in both the training and validation stages,with 91.30%training accuracy and 94.38%validation accuracy.Thus,the model shows good learning and generalization capabilities with minor losses of 0.22 in training and 0.1553 in validation.Furthermore,for both macro and micro averages across class 0(normal)and class 1(anomalous)data,the study evaluates the model using a variety of assessment measures,such as accuracy scores,precision,recall,and F1 scores.The macro-average recall is 0.9422,the macro-average precision is 0.9482,and the accuracy scores are 0.942.Furthermore,macro-averaged F1 scores of 0.9245 for class 1 and 0.9434 for class 0 demonstrate the model’s ability to precisely identify anomalies precisely.The research also highlights how real-time threat monitoring and enhanced resistance against new online attacks may be achieved byDNN-based intrusion detection systems,which can significantly improve network security.The study underscores the critical function ofDNN-based IDS in contemporary cybersecurity procedures by setting the foundation for further developments in this field.Upcoming research aims to enhance intrusion detection systems by examining cooperative learning techniques and integrating up-to-date threat knowledge.展开更多
Vehicular ad hoc networks(VANETs)provide intelligent navigation and efficient route management,resulting in time savings and cost reductions in the transportation sector.However,the exchange of beacons and messages ov...Vehicular ad hoc networks(VANETs)provide intelligent navigation and efficient route management,resulting in time savings and cost reductions in the transportation sector.However,the exchange of beacons and messages over public channels among vehicles and roadside units renders these networks vulnerable to numerous attacks and privacy violations.To address these challenges,several privacy and security preservation protocols based on blockchain and public key cryptography have been proposed recently.However,most of these schemes are limited by a long execution time and massive communication costs,which make them inefficient for on-board units(OBUs).Additionally,some of them are still susceptible to many attacks.As such,this study presents a novel protocol based on the fusion of elliptic curve cryptography(ECC)and bilinear pairing(BP)operations.The formal security analysis is accomplished using the Burrows–Abadi–Needham(BAN)logic,demonstrating that our scheme is verifiably secure.The proposed scheme’s informal security assessment also shows that it provides salient security features,such as non-repudiation,anonymity,and unlinkability.Moreover,the scheme is shown to be resilient against attacks,such as packet replays,forgeries,message falsifications,and impersonations.From the performance perspective,this protocol yields a 37.88%reduction in communication overheads and a 44.44%improvement in the supported security features.Therefore,the proposed scheme can be deployed in VANETs to provide robust security at low overheads.展开更多
Security issues in cloud networks and edge computing have become very common. This research focuses on analyzing such issues and developing the best solutions. A detailed literature review has been conducted in this r...Security issues in cloud networks and edge computing have become very common. This research focuses on analyzing such issues and developing the best solutions. A detailed literature review has been conducted in this regard. The findings have shown that many challenges are linked to edge computing, such as privacy concerns, security breaches, high costs, low efficiency, etc. Therefore, there is a need to implement proper security measures to overcome these issues. Using emerging trends, like machine learning, encryption, artificial intelligence, real-time monitoring, etc., can help mitigate security issues. They can also develop a secure and safe future in cloud computing. It was concluded that the security implications of edge computing can easily be covered with the help of new technologies and techniques.展开更多
With the exponential increase in information security risks,ensuring the safety of aircraft heavily relies on the accurate performance of risk assessment.However,experts possess a limited understanding of fundamental ...With the exponential increase in information security risks,ensuring the safety of aircraft heavily relies on the accurate performance of risk assessment.However,experts possess a limited understanding of fundamental security elements,such as assets,threats,and vulnerabilities,due to the confidentiality of airborne networks,resulting in cognitive uncertainty.Therefore,the Pythagorean fuzzy Analytic Hierarchy Process(AHP)Technique for Order Preference by Similarity to an Ideal Solution(TOPSIS)is proposed to address the expert cognitive uncertainty during information security risk assessment for airborne networks.First,Pythagorean fuzzy AHP is employed to construct an index system and quantify the pairwise comparison matrix for determining the index weights,which is used to solve the expert cognitive uncertainty in the process of evaluating the index system weight of airborne networks.Second,Pythagorean fuzzy the TOPSIS to an Ideal Solution is utilized to assess the risk prioritization of airborne networks using the Pythagorean fuzzy weighted distance measure,which is used to address the cognitive uncertainty in the evaluation process of various indicators in airborne network threat scenarios.Finally,a comparative analysis was conducted.The proposed method demonstrated the highest Kendall coordination coefficient of 0.952.This finding indicates superior consistency and confirms the efficacy of the method in addressing expert cognition during information security risk assessment for airborne networks.展开更多
In order to enhance the accuracy of Air Traffic Control(ATC)cybersecurity attack detection,in this paper,a new clustering detection method is designed for air traffic control network security attacks.The feature set f...In order to enhance the accuracy of Air Traffic Control(ATC)cybersecurity attack detection,in this paper,a new clustering detection method is designed for air traffic control network security attacks.The feature set for ATC cybersecurity attacks is constructed by setting the feature states,adding recursive features,and determining the feature criticality.The expected information gain and entropy of the feature data are computed to determine the information gain of the feature data and reduce the interference of similar feature data.An autoencoder is introduced into the AI(artificial intelligence)algorithm to encode and decode the characteristics of ATC network security attack behavior to reduce the dimensionality of the ATC network security attack behavior data.Based on the above processing,an unsupervised learning algorithm for clustering detection of ATC network security attacks is designed.First,determine the distance between the clustering clusters of ATC network security attack behavior characteristics,calculate the clustering threshold,and construct the initial clustering center.Then,the new average value of all feature objects in each cluster is recalculated as the new cluster center.Second,it traverses all objects in a cluster of ATC network security attack behavior feature data.Finally,the cluster detection of ATC network security attack behavior is completed by the computation of objective functions.The experiment took three groups of experimental attack behavior data sets as the test object,and took the detection rate,false detection rate and recall rate as the test indicators,and selected three similar methods for comparative test.The experimental results show that the detection rate of this method is about 98%,the false positive rate is below 1%,and the recall rate is above 97%.Research shows that this method can improve the detection performance of security attacks in air traffic control network.展开更多
The proliferation of Internet of Things(IoT)technology has exponentially increased the number of devices interconnected over networks,thereby escalating the potential vectors for cybersecurity threats.In response,this...The proliferation of Internet of Things(IoT)technology has exponentially increased the number of devices interconnected over networks,thereby escalating the potential vectors for cybersecurity threats.In response,this study rigorously applies and evaluates deep learning models—namely Convolutional Neural Networks(CNN),Autoencoders,and Long Short-Term Memory(LSTM)networks—to engineer an advanced Intrusion Detection System(IDS)specifically designed for IoT environments.Utilizing the comprehensive UNSW-NB15 dataset,which encompasses 49 distinct features representing varied network traffic characteristics,our methodology focused on meticulous data preprocessing including cleaning,normalization,and strategic feature selection to enhance model performance.A robust comparative analysis highlights the CNN model’s outstanding performance,achieving an accuracy of 99.89%,precision of 99.90%,recall of 99.88%,and an F1 score of 99.89%in binary classification tasks,outperforming other evaluated models significantly.These results not only confirm the superior detection capabilities of CNNs in distinguishing between benign and malicious network activities but also illustrate the model’s effectiveness in multiclass classification tasks,addressing various attack vectors prevalent in IoT setups.The empirical findings from this research demonstrate deep learning’s transformative potential in fortifying network security infrastructures against sophisticated cyber threats,providing a scalable,high-performance solution that enhances security measures across increasingly complex IoT ecosystems.This study’s outcomes are critical for security practitioners and researchers focusing on the next generation of cyber defense mechanisms,offering a data-driven foundation for future advancements in IoT security strategies.展开更多
This paper investigates the security and reliability of information transmission within an underlay wiretap energy harvesting cognitive two-way relay network.In the network,energy-constrained secondary network(SN)node...This paper investigates the security and reliability of information transmission within an underlay wiretap energy harvesting cognitive two-way relay network.In the network,energy-constrained secondary network(SN)nodes harvest energy from radio frequency signals of a multi-antenna power beacon.Two SN sources exchange their messages via a SN decode-and-forward relay in the presence of a multiantenna eavesdropper by using a four-phase time division broadcast protocol,and the hardware impairments of SN nodes and eavesdropper are modeled.To alleviate eavesdropping attacks,the artificial noise is applied by SN nodes.The physical layer security performance of SN is analyzed and evaluated by the exact closed-form expressions of outage probability(OP),intercept probability(IP),and OP+IP over quasistatic Rayleigh fading channel.Additionally,due to the complexity of OP+IP expression,a self-adaptive chaotic quantum particle swarm optimization-based resource allocation algorithm is proposed to jointly optimize energy harvesting ratio and power allocation factor,which can achieve security-reliability tradeoff for SN.Extensive simulations demonstrate the correctness of theoretical analysis and the effectiveness of the proposed optimization algorithm.展开更多
This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends t...This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends that they are not the same. The concept of cyber security is explored, which goes beyond protecting information resources to include a wider variety of assets, including people [1]. Protecting information assets is the main goal of traditional information security, with consideration to the human element and how people fit into the security process. On the other hand, cyber security adds a new level of complexity, as people might unintentionally contribute to or become targets of cyberattacks. This aspect presents moral questions since it is becoming more widely accepted that society has a duty to protect weaker members of society, including children [1]. The study emphasizes how important cyber security is on a larger scale, with many countries creating plans and laws to counteract cyberattacks. Nevertheless, a lot of these sources frequently neglect to define the differences or the relationship between information security and cyber security [1]. The paper focus on differentiating between cybersecurity and information security on a larger scale. The study also highlights other areas of cybersecurity which includes defending people, social norms, and vital infrastructure from threats that arise from online in addition to information and technology protection. It contends that ethical issues and the human factor are becoming more and more important in protecting assets in the digital age, and that cyber security is a paradigm shift in this regard [1].展开更多
In an era where digital technology is paramount, higher education institutions like the University of Zambia (UNZA) are employing advanced computer networks to enhance their operational capacity and offer cutting-edge...In an era where digital technology is paramount, higher education institutions like the University of Zambia (UNZA) are employing advanced computer networks to enhance their operational capacity and offer cutting-edge services to their academic fraternity. Spanning across the Great East Road campus, UNZA has established one of the most extensive computer networks in Zambia, serving a burgeoning community of over 20,000 active users through a Metropolitan Area Network (MAN). However, as the digital landscape continues to evolve, it is besieged with burgeoning challenges that threaten the very fabric of network integrity—cyber security threats and the imperatives of maintaining high Quality of Service (QoS). In an effort to mitigate these threats and ensure network efficiency, the development of a mobile application to monitor temperatures in the server room was imperative. According to L. Wei, X. Zeng, and T. Shen, the use of wireless sensory networks to monitor the temperature of train switchgear contact points represents a cost-effective solution. The system is based on wireless communication technology and is detailed in their paper, “A wireless solution for train switchgear contact temperature monitoring and alarming system based on wireless communication technology”, published in the International Journal of Communications, Network and System Sciences, vol. 8, no. 4, pp. 79-87, 2015 [1]. Therefore, in this study, a mobile application technology was explored for monitoring of temperatures in the server room in order to aid Cisco device performance. Additionally, this paper also explores the hardening of Cisco device security and QoS which are the cornerstones of this study.展开更多
The rapid development of communication technology and computer networks has brought a lot of convenience to production and life,but it also increases the security problem.Information security has become one of the sev...The rapid development of communication technology and computer networks has brought a lot of convenience to production and life,but it also increases the security problem.Information security has become one of the severe challenges faced by people in the digital age.Currently,the security problems facing the field of communication technology and computer networks in China mainly include the evolution of offensive technology,the risk of large-scale data transmission,the potential vulnerabilities introduced by emerging technology,and the dilemma of user identity verification.This paper analyzes the frontier challenges of communication technology and computer network security,and puts forward corresponding solutions,hoping to provide ideas for coping with the security challenges of communication technology and computer networks.展开更多
In the era of the digital economy,the informatization degree of various industries is getting deeper and deeper,and network information security has also come into people’s eyes.Colleges and universities are in the p...In the era of the digital economy,the informatization degree of various industries is getting deeper and deeper,and network information security has also come into people’s eyes.Colleges and universities are in the position of training applied talents,because of the needs of teaching and education,as well as the requirements of teaching reform,the information construction of colleges and universities has been gradually improved,but the problem of network information security is also worth causing people to ponder.The low security of the network environment will cause college network information security leaks,and even hackers will attack the official website of the university and leak the personal information of teachers and students.To solve such problems,this paper studies the protection of college network information security against the background of the digital economy era.This paper first analyzes the significance of network information security protection,then points out the current and moral problems,and finally puts forward specific countermeasures,hoping to create a safe learning environment for teachers and students for reference.展开更多
With the continuous development of computer network technology, its applications in daily life and work have become increasingly widespread, greatly improving efficiency. However, certain security risks remain. To ens...With the continuous development of computer network technology, its applications in daily life and work have become increasingly widespread, greatly improving efficiency. However, certain security risks remain. To ensure the security of computer networks and databases, it is essential to enhance the security of both through optimization of technology. This includes improving management practices, optimizing data processing methods, and establishing comprehensive laws and regulations. This paper analyzes the current security risks in computer networks and databases and proposes corresponding solutions, offering reference points for relevant personnel.展开更多
Real-time multimedia sharing in Consumer-centric Multimedia Network(CMN) requires usability anywhere, anytime and from any device. However, CMNs are usually located or implemented on application layer, which makes CMN...Real-time multimedia sharing in Consumer-centric Multimedia Network(CMN) requires usability anywhere, anytime and from any device. However, CMNs are usually located or implemented on application layer, which makes CMNs subjected to their fixed substrate security framework. A fundamental diversifying attribute for the customized security experiences of CMNs is pressing. This paper proposes a programmable network structure which is named Service Processing Chain(SPC) based on network function combination. The SPC is established by the ordinal combination of network functions in substrate switches dynamically, and therefore constructs a special channel for each CMN with required security. The construction and reconfiguration algorithms of SPC are also discussed in this paper. Evaluations and implementation show that above approaches are effective in providing multilevel security with flexibility and expansibility. It is believed that the SPC could provide customized security service and drive participative real-time multimedia sharing for CMNs.展开更多
As the number of Virtual Machines(VMs) consolidated on single physical server increases with the rapid advance of server hardware,virtual network turns complex and frangible.Modern Network Security Engines(NSE) are in...As the number of Virtual Machines(VMs) consolidated on single physical server increases with the rapid advance of server hardware,virtual network turns complex and frangible.Modern Network Security Engines(NSE) are introduced to eradicate the intrusions occurring in the virtual network.In this paper,we point out the inadequacy of the present live migration implementation,which hinders itself from providing transparent VM relocation between hypervisors equipped with Network Security Engines(NSE-H).This occurs because the current implementation ignores VM-related Security Context(SC) required by NSEs embedded in NSE-H.We present the CoM,a comprehensive live migration framework,for NSE-H-based virtualization computing environment.We built a prototype system on Xen hypervisors to evaluate our framework,and conduct experiments under various realistic application environments.The results demonstrate that our solution successfully fixes the inadequacy of the present live migration implementation,and the performance overhead is negligible.展开更多
A structure iterated by the unbalanced Feistel networks is introduced. It is showed that this structure is provable resistant against linear attack. The main result of this paper is that the upper bound of r-round (r...A structure iterated by the unbalanced Feistel networks is introduced. It is showed that this structure is provable resistant against linear attack. The main result of this paper is that the upper bound of r-round (r≥2m) linear hull probabilities are bounded by q^2 when around function F is bijective and the maximal linear hull probabilities of round function F is q. Application of this structure to block cipher designs brings out the provable security against linear attack with the upper bounds of probabilities.展开更多
In cognitive radio networks(CRNs), through recruiting secondary user(SU) as friendly jammer, the secrecy rate obtained by primary user(PU) can be improved. Previous work only considered a simple scenario with a single...In cognitive radio networks(CRNs), through recruiting secondary user(SU) as friendly jammer, the secrecy rate obtained by primary user(PU) can be improved. Previous work only considered a simple scenario with a single PU in their frameworks. In this paper, we will consider a more complicated scenario with multiple PUs and try to investigate the cooperative jamming between multiple PUs and a single SU. When there are multiple PUs in CRN, in order to obtain more spectrum for data transmission, SU will cooperate with multiple PUs at the same time. Considering that both PU and SU are rational and selfish individuals, the interaction between PUs and SU is formulated as a multi-leaders and single-follower Stackelberg game, wherein PU is the leader and SU is the follower. And the Stackelberg Equilibrium(SE) is considered as the final decisions accepted by all PUs and SU. Furthermore, we also prove that when a specific condition is satisfied, the existence of SE can be guaranteed. And a Gauss-Jacobi iterative algorithm is proposed to compute a SE. Finally, simulation results are given to verify the performance and demonstrate that both of the PUs' secrecy rate and the SU's transmission rate can be improved through cooperation.展开更多
Since the frequency of network security incidents is nonlinear,traditional prediction methods such as ARMA,Gray systems are difficult to deal with the problem.When the size of sample is small,methods based on artifici...Since the frequency of network security incidents is nonlinear,traditional prediction methods such as ARMA,Gray systems are difficult to deal with the problem.When the size of sample is small,methods based on artificial neural network may not reach a high degree of preciseness.Least Squares Support Vector Machines (LSSVM) is a kind of machine learning methods based on the statistics learning theory,it can be applied to solve small sample and non-linear problems very well.This paper applied LSSVM to predict the occur frequency of network security incidents.To improve the accuracy,it used an improved genetic algorithm to optimize the parameters of LSSVM.Verified by real data sets,the improved genetic algorithm (IGA) converges faster than the simple genetic algorithm (SGA),and has a higher efficiency in the optimization procedure.Specially,the optimized LSSVM model worked very well on the prediction of frequency of network security incidents.展开更多
This paper evaluates the performance of Internet Protocol Security (IPSec) based Multiprotocol Label Switching (MPLS) virtual private network (VPN) in a small to medium sized organization. The demand for security in d...This paper evaluates the performance of Internet Protocol Security (IPSec) based Multiprotocol Label Switching (MPLS) virtual private network (VPN) in a small to medium sized organization. The demand for security in data networks has been increasing owing to the high cyber attacks and potential risks associated with networks spread over distant geographical locations. The MPLS networks ride on the public network backbone that is porous and highly susceptible to attacks and so the need for reliable security mechanisms to be part of the deployment plan. The evaluation criteria concentrated on Voice over Internet Protocol (VoIP) and Video conferencing with keen interest in jitter, end to end delivery and general data flow. This study used both structured questionnaire and observation methods. The structured questionnaire was administered to a group of 70 VPN users in a company. This provided the study with precise responses. The observation method was used in data simulations using OPNET Version 14.5 Simulation software. The results show that the IPSec features increase the size of data packets by approximately 9.98% translating into approximately 90.02% effectiveness. The tests showed that the performance metrics are all well within the recommended standards. The IPSec Based MPLS Virtual private network is more stable and secure than one without IPSec.展开更多
The increasing amount and intricacy of network traffic in the modern digital era have worsened the difficulty of identifying abnormal behaviours that may indicate potential security breaches or operational interruptio...The increasing amount and intricacy of network traffic in the modern digital era have worsened the difficulty of identifying abnormal behaviours that may indicate potential security breaches or operational interruptions. Conventional detection approaches face challenges in keeping up with the ever-changing strategies of cyber-attacks, resulting in heightened susceptibility and significant harm to network infrastructures. In order to tackle this urgent issue, this project focused on developing an effective anomaly detection system that utilizes Machine Learning technology. The suggested model utilizes contemporary machine learning algorithms and frameworks to autonomously detect deviations from typical network behaviour. It promptly identifies anomalous activities that may indicate security breaches or performance difficulties. The solution entails a multi-faceted approach encompassing data collection, preprocessing, feature engineering, model training, and evaluation. By utilizing machine learning methods, the model is trained on a wide range of datasets that include both regular and abnormal network traffic patterns. This training ensures that the model can adapt to numerous scenarios. The main priority is to ensure that the system is functional and efficient, with a particular emphasis on reducing false positives to avoid unwanted alerts. Additionally, efforts are directed on improving anomaly detection accuracy so that the model can consistently distinguish between potentially harmful and benign activity. This project aims to greatly strengthen network security by addressing emerging cyber threats and improving their resilience and reliability.展开更多
文摘As 5th Generation(5G)and Beyond 5G(B5G)networks become increasingly prevalent,ensuring not only networksecurity but also the security and reliability of the applications,the so-called network applications,becomesof paramount importance.This paper introduces a novel integrated model architecture,combining a networkapplication validation framework with an AI-driven reactive system to enhance security in real-time.The proposedmodel leverages machine learning(ML)and artificial intelligence(AI)to dynamically monitor and respond tosecurity threats,effectively mitigating potential risks before they impact the network infrastructure.This dualapproach not only validates the functionality and performance of network applications before their real deploymentbut also enhances the network’s ability to adapt and respond to threats as they arise.The implementation ofthis model,in the shape of an architecture deployed in two distinct sites,demonstrates its practical viability andeffectiveness.Integrating application validation with proactive threat detection and response,the proposed modeladdresses critical security challenges unique to 5G infrastructures.This paper details the model,architecture’sdesign,implementation,and evaluation of this solution,illustrating its potential to improve network securitymanagement in 5G environments significantly.Our findings highlight the architecture’s capability to ensure boththe operational integrity of network applications and the security of the underlying infrastructure,presenting asignificant advancement in network security.
基金Princess Nourah bint Abdulrahman University for funding this project through the Researchers Supporting Project(PNURSP2024R319)funded by the Prince Sultan University,Riyadh,Saudi Arabia.
文摘This study describes improving network security by implementing and assessing an intrusion detection system(IDS)based on deep neural networks(DNNs).The paper investigates contemporary technical ways for enhancing intrusion detection performance,given the vital relevance of safeguarding computer networks against harmful activity.The DNN-based IDS is trained and validated by the model using the NSL-KDD dataset,a popular benchmark for IDS research.The model performs well in both the training and validation stages,with 91.30%training accuracy and 94.38%validation accuracy.Thus,the model shows good learning and generalization capabilities with minor losses of 0.22 in training and 0.1553 in validation.Furthermore,for both macro and micro averages across class 0(normal)and class 1(anomalous)data,the study evaluates the model using a variety of assessment measures,such as accuracy scores,precision,recall,and F1 scores.The macro-average recall is 0.9422,the macro-average precision is 0.9482,and the accuracy scores are 0.942.Furthermore,macro-averaged F1 scores of 0.9245 for class 1 and 0.9434 for class 0 demonstrate the model’s ability to precisely identify anomalies precisely.The research also highlights how real-time threat monitoring and enhanced resistance against new online attacks may be achieved byDNN-based intrusion detection systems,which can significantly improve network security.The study underscores the critical function ofDNN-based IDS in contemporary cybersecurity procedures by setting the foundation for further developments in this field.Upcoming research aims to enhance intrusion detection systems by examining cooperative learning techniques and integrating up-to-date threat knowledge.
基金supported by Teaching Reform Project of Shenzhen University of Technology under Grant No.20231016.
文摘Vehicular ad hoc networks(VANETs)provide intelligent navigation and efficient route management,resulting in time savings and cost reductions in the transportation sector.However,the exchange of beacons and messages over public channels among vehicles and roadside units renders these networks vulnerable to numerous attacks and privacy violations.To address these challenges,several privacy and security preservation protocols based on blockchain and public key cryptography have been proposed recently.However,most of these schemes are limited by a long execution time and massive communication costs,which make them inefficient for on-board units(OBUs).Additionally,some of them are still susceptible to many attacks.As such,this study presents a novel protocol based on the fusion of elliptic curve cryptography(ECC)and bilinear pairing(BP)operations.The formal security analysis is accomplished using the Burrows–Abadi–Needham(BAN)logic,demonstrating that our scheme is verifiably secure.The proposed scheme’s informal security assessment also shows that it provides salient security features,such as non-repudiation,anonymity,and unlinkability.Moreover,the scheme is shown to be resilient against attacks,such as packet replays,forgeries,message falsifications,and impersonations.From the performance perspective,this protocol yields a 37.88%reduction in communication overheads and a 44.44%improvement in the supported security features.Therefore,the proposed scheme can be deployed in VANETs to provide robust security at low overheads.
文摘Security issues in cloud networks and edge computing have become very common. This research focuses on analyzing such issues and developing the best solutions. A detailed literature review has been conducted in this regard. The findings have shown that many challenges are linked to edge computing, such as privacy concerns, security breaches, high costs, low efficiency, etc. Therefore, there is a need to implement proper security measures to overcome these issues. Using emerging trends, like machine learning, encryption, artificial intelligence, real-time monitoring, etc., can help mitigate security issues. They can also develop a secure and safe future in cloud computing. It was concluded that the security implications of edge computing can easily be covered with the help of new technologies and techniques.
基金supported by the Fundamental Research Funds for the Central Universities of CAUC(3122022076)National Natural Science Foundation of China(NSFC)(U2133203).
文摘With the exponential increase in information security risks,ensuring the safety of aircraft heavily relies on the accurate performance of risk assessment.However,experts possess a limited understanding of fundamental security elements,such as assets,threats,and vulnerabilities,due to the confidentiality of airborne networks,resulting in cognitive uncertainty.Therefore,the Pythagorean fuzzy Analytic Hierarchy Process(AHP)Technique for Order Preference by Similarity to an Ideal Solution(TOPSIS)is proposed to address the expert cognitive uncertainty during information security risk assessment for airborne networks.First,Pythagorean fuzzy AHP is employed to construct an index system and quantify the pairwise comparison matrix for determining the index weights,which is used to solve the expert cognitive uncertainty in the process of evaluating the index system weight of airborne networks.Second,Pythagorean fuzzy the TOPSIS to an Ideal Solution is utilized to assess the risk prioritization of airborne networks using the Pythagorean fuzzy weighted distance measure,which is used to address the cognitive uncertainty in the evaluation process of various indicators in airborne network threat scenarios.Finally,a comparative analysis was conducted.The proposed method demonstrated the highest Kendall coordination coefficient of 0.952.This finding indicates superior consistency and confirms the efficacy of the method in addressing expert cognition during information security risk assessment for airborne networks.
基金National Natural Science Foundation of China(U2133208,U20A20161)National Natural Science Foundation of China(No.62273244)Sichuan Science and Technology Program(No.2022YFG0180).
文摘In order to enhance the accuracy of Air Traffic Control(ATC)cybersecurity attack detection,in this paper,a new clustering detection method is designed for air traffic control network security attacks.The feature set for ATC cybersecurity attacks is constructed by setting the feature states,adding recursive features,and determining the feature criticality.The expected information gain and entropy of the feature data are computed to determine the information gain of the feature data and reduce the interference of similar feature data.An autoencoder is introduced into the AI(artificial intelligence)algorithm to encode and decode the characteristics of ATC network security attack behavior to reduce the dimensionality of the ATC network security attack behavior data.Based on the above processing,an unsupervised learning algorithm for clustering detection of ATC network security attacks is designed.First,determine the distance between the clustering clusters of ATC network security attack behavior characteristics,calculate the clustering threshold,and construct the initial clustering center.Then,the new average value of all feature objects in each cluster is recalculated as the new cluster center.Second,it traverses all objects in a cluster of ATC network security attack behavior feature data.Finally,the cluster detection of ATC network security attack behavior is completed by the computation of objective functions.The experiment took three groups of experimental attack behavior data sets as the test object,and took the detection rate,false detection rate and recall rate as the test indicators,and selected three similar methods for comparative test.The experimental results show that the detection rate of this method is about 98%,the false positive rate is below 1%,and the recall rate is above 97%.Research shows that this method can improve the detection performance of security attacks in air traffic control network.
文摘The proliferation of Internet of Things(IoT)technology has exponentially increased the number of devices interconnected over networks,thereby escalating the potential vectors for cybersecurity threats.In response,this study rigorously applies and evaluates deep learning models—namely Convolutional Neural Networks(CNN),Autoencoders,and Long Short-Term Memory(LSTM)networks—to engineer an advanced Intrusion Detection System(IDS)specifically designed for IoT environments.Utilizing the comprehensive UNSW-NB15 dataset,which encompasses 49 distinct features representing varied network traffic characteristics,our methodology focused on meticulous data preprocessing including cleaning,normalization,and strategic feature selection to enhance model performance.A robust comparative analysis highlights the CNN model’s outstanding performance,achieving an accuracy of 99.89%,precision of 99.90%,recall of 99.88%,and an F1 score of 99.89%in binary classification tasks,outperforming other evaluated models significantly.These results not only confirm the superior detection capabilities of CNNs in distinguishing between benign and malicious network activities but also illustrate the model’s effectiveness in multiclass classification tasks,addressing various attack vectors prevalent in IoT setups.The empirical findings from this research demonstrate deep learning’s transformative potential in fortifying network security infrastructures against sophisticated cyber threats,providing a scalable,high-performance solution that enhances security measures across increasingly complex IoT ecosystems.This study’s outcomes are critical for security practitioners and researchers focusing on the next generation of cyber defense mechanisms,offering a data-driven foundation for future advancements in IoT security strategies.
基金supported in part by the National Natural Science Foundation of China under Grant 61971450in part by the Hunan Provincial Science and Technology Project Foundation under Grant 2018TP1018+1 种基金in part by the Natural Science Foundation of Hunan Province under Grant 2018JJ2533in part by Hunan Province College Students Research Learning and Innovative Experiment Project under Grant S202110542056。
文摘This paper investigates the security and reliability of information transmission within an underlay wiretap energy harvesting cognitive two-way relay network.In the network,energy-constrained secondary network(SN)nodes harvest energy from radio frequency signals of a multi-antenna power beacon.Two SN sources exchange their messages via a SN decode-and-forward relay in the presence of a multiantenna eavesdropper by using a four-phase time division broadcast protocol,and the hardware impairments of SN nodes and eavesdropper are modeled.To alleviate eavesdropping attacks,the artificial noise is applied by SN nodes.The physical layer security performance of SN is analyzed and evaluated by the exact closed-form expressions of outage probability(OP),intercept probability(IP),and OP+IP over quasistatic Rayleigh fading channel.Additionally,due to the complexity of OP+IP expression,a self-adaptive chaotic quantum particle swarm optimization-based resource allocation algorithm is proposed to jointly optimize energy harvesting ratio and power allocation factor,which can achieve security-reliability tradeoff for SN.Extensive simulations demonstrate the correctness of theoretical analysis and the effectiveness of the proposed optimization algorithm.
文摘This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends that they are not the same. The concept of cyber security is explored, which goes beyond protecting information resources to include a wider variety of assets, including people [1]. Protecting information assets is the main goal of traditional information security, with consideration to the human element and how people fit into the security process. On the other hand, cyber security adds a new level of complexity, as people might unintentionally contribute to or become targets of cyberattacks. This aspect presents moral questions since it is becoming more widely accepted that society has a duty to protect weaker members of society, including children [1]. The study emphasizes how important cyber security is on a larger scale, with many countries creating plans and laws to counteract cyberattacks. Nevertheless, a lot of these sources frequently neglect to define the differences or the relationship between information security and cyber security [1]. The paper focus on differentiating between cybersecurity and information security on a larger scale. The study also highlights other areas of cybersecurity which includes defending people, social norms, and vital infrastructure from threats that arise from online in addition to information and technology protection. It contends that ethical issues and the human factor are becoming more and more important in protecting assets in the digital age, and that cyber security is a paradigm shift in this regard [1].
文摘In an era where digital technology is paramount, higher education institutions like the University of Zambia (UNZA) are employing advanced computer networks to enhance their operational capacity and offer cutting-edge services to their academic fraternity. Spanning across the Great East Road campus, UNZA has established one of the most extensive computer networks in Zambia, serving a burgeoning community of over 20,000 active users through a Metropolitan Area Network (MAN). However, as the digital landscape continues to evolve, it is besieged with burgeoning challenges that threaten the very fabric of network integrity—cyber security threats and the imperatives of maintaining high Quality of Service (QoS). In an effort to mitigate these threats and ensure network efficiency, the development of a mobile application to monitor temperatures in the server room was imperative. According to L. Wei, X. Zeng, and T. Shen, the use of wireless sensory networks to monitor the temperature of train switchgear contact points represents a cost-effective solution. The system is based on wireless communication technology and is detailed in their paper, “A wireless solution for train switchgear contact temperature monitoring and alarming system based on wireless communication technology”, published in the International Journal of Communications, Network and System Sciences, vol. 8, no. 4, pp. 79-87, 2015 [1]. Therefore, in this study, a mobile application technology was explored for monitoring of temperatures in the server room in order to aid Cisco device performance. Additionally, this paper also explores the hardening of Cisco device security and QoS which are the cornerstones of this study.
文摘The rapid development of communication technology and computer networks has brought a lot of convenience to production and life,but it also increases the security problem.Information security has become one of the severe challenges faced by people in the digital age.Currently,the security problems facing the field of communication technology and computer networks in China mainly include the evolution of offensive technology,the risk of large-scale data transmission,the potential vulnerabilities introduced by emerging technology,and the dilemma of user identity verification.This paper analyzes the frontier challenges of communication technology and computer network security,and puts forward corresponding solutions,hoping to provide ideas for coping with the security challenges of communication technology and computer networks.
文摘In the era of the digital economy,the informatization degree of various industries is getting deeper and deeper,and network information security has also come into people’s eyes.Colleges and universities are in the position of training applied talents,because of the needs of teaching and education,as well as the requirements of teaching reform,the information construction of colleges and universities has been gradually improved,but the problem of network information security is also worth causing people to ponder.The low security of the network environment will cause college network information security leaks,and even hackers will attack the official website of the university and leak the personal information of teachers and students.To solve such problems,this paper studies the protection of college network information security against the background of the digital economy era.This paper first analyzes the significance of network information security protection,then points out the current and moral problems,and finally puts forward specific countermeasures,hoping to create a safe learning environment for teachers and students for reference.
文摘With the continuous development of computer network technology, its applications in daily life and work have become increasingly widespread, greatly improving efficiency. However, certain security risks remain. To ensure the security of computer networks and databases, it is essential to enhance the security of both through optimization of technology. This includes improving management practices, optimizing data processing methods, and establishing comprehensive laws and regulations. This paper analyzes the current security risks in computer networks and databases and proposes corresponding solutions, offering reference points for relevant personnel.
基金supported by The National Basic Research Program of China (973) (Grant No. 2012CB315901, 2013CB329104)The National Natural Science Foundation of China (Grant No. 61521003, 61372121, 61309019, 61572519, 61502530)The National High Technology Research and Development Program of China (863) (Grant No. 2015AA016102)
文摘Real-time multimedia sharing in Consumer-centric Multimedia Network(CMN) requires usability anywhere, anytime and from any device. However, CMNs are usually located or implemented on application layer, which makes CMNs subjected to their fixed substrate security framework. A fundamental diversifying attribute for the customized security experiences of CMNs is pressing. This paper proposes a programmable network structure which is named Service Processing Chain(SPC) based on network function combination. The SPC is established by the ordinal combination of network functions in substrate switches dynamically, and therefore constructs a special channel for each CMN with required security. The construction and reconfiguration algorithms of SPC are also discussed in this paper. Evaluations and implementation show that above approaches are effective in providing multilevel security with flexibility and expansibility. It is believed that the SPC could provide customized security service and drive participative real-time multimedia sharing for CMNs.
基金supported by State Key Laboratory of Software Development Environment under Grant No. SKLSDE-2009ZX-02China Aviation Science Fund under Grant No.20081951National High Technical Research and Development Program of China (863 Program) under Grant No.2007AA01Z183
文摘As the number of Virtual Machines(VMs) consolidated on single physical server increases with the rapid advance of server hardware,virtual network turns complex and frangible.Modern Network Security Engines(NSE) are introduced to eradicate the intrusions occurring in the virtual network.In this paper,we point out the inadequacy of the present live migration implementation,which hinders itself from providing transparent VM relocation between hypervisors equipped with Network Security Engines(NSE-H).This occurs because the current implementation ignores VM-related Security Context(SC) required by NSEs embedded in NSE-H.We present the CoM,a comprehensive live migration framework,for NSE-H-based virtualization computing environment.We built a prototype system on Xen hypervisors to evaluate our framework,and conduct experiments under various realistic application environments.The results demonstrate that our solution successfully fixes the inadequacy of the present live migration implementation,and the performance overhead is negligible.
基金Supported by the fund of National Laboratory for Modern Communications (5143603ZDS0601),the outstanding youth science foundation of Henan (0312001800).
文摘A structure iterated by the unbalanced Feistel networks is introduced. It is showed that this structure is provable resistant against linear attack. The main result of this paper is that the upper bound of r-round (r≥2m) linear hull probabilities are bounded by q^2 when around function F is bijective and the maximal linear hull probabilities of round function F is q. Application of this structure to block cipher designs brings out the provable security against linear attack with the upper bounds of probabilities.
基金supported in part by the National Key Research and Development Program of China under Grant 2016QY01W0204in part by Key Industrial Innovation Chain in Industrial Domain under Grant 2016KTZDGY-02in part by National High-Level TalentsSpecial Support Program of China under Grant CS31117200001
文摘In cognitive radio networks(CRNs), through recruiting secondary user(SU) as friendly jammer, the secrecy rate obtained by primary user(PU) can be improved. Previous work only considered a simple scenario with a single PU in their frameworks. In this paper, we will consider a more complicated scenario with multiple PUs and try to investigate the cooperative jamming between multiple PUs and a single SU. When there are multiple PUs in CRN, in order to obtain more spectrum for data transmission, SU will cooperate with multiple PUs at the same time. Considering that both PU and SU are rational and selfish individuals, the interaction between PUs and SU is formulated as a multi-leaders and single-follower Stackelberg game, wherein PU is the leader and SU is the follower. And the Stackelberg Equilibrium(SE) is considered as the final decisions accepted by all PUs and SU. Furthermore, we also prove that when a specific condition is satisfied, the existence of SE can be guaranteed. And a Gauss-Jacobi iterative algorithm is proposed to compute a SE. Finally, simulation results are given to verify the performance and demonstrate that both of the PUs' secrecy rate and the SU's transmission rate can be improved through cooperation.
基金supported in part by the National High Technology Research and Development Program of China ("863" Program) (No.2007AA010502)
文摘Since the frequency of network security incidents is nonlinear,traditional prediction methods such as ARMA,Gray systems are difficult to deal with the problem.When the size of sample is small,methods based on artificial neural network may not reach a high degree of preciseness.Least Squares Support Vector Machines (LSSVM) is a kind of machine learning methods based on the statistics learning theory,it can be applied to solve small sample and non-linear problems very well.This paper applied LSSVM to predict the occur frequency of network security incidents.To improve the accuracy,it used an improved genetic algorithm to optimize the parameters of LSSVM.Verified by real data sets,the improved genetic algorithm (IGA) converges faster than the simple genetic algorithm (SGA),and has a higher efficiency in the optimization procedure.Specially,the optimized LSSVM model worked very well on the prediction of frequency of network security incidents.
文摘This paper evaluates the performance of Internet Protocol Security (IPSec) based Multiprotocol Label Switching (MPLS) virtual private network (VPN) in a small to medium sized organization. The demand for security in data networks has been increasing owing to the high cyber attacks and potential risks associated with networks spread over distant geographical locations. The MPLS networks ride on the public network backbone that is porous and highly susceptible to attacks and so the need for reliable security mechanisms to be part of the deployment plan. The evaluation criteria concentrated on Voice over Internet Protocol (VoIP) and Video conferencing with keen interest in jitter, end to end delivery and general data flow. This study used both structured questionnaire and observation methods. The structured questionnaire was administered to a group of 70 VPN users in a company. This provided the study with precise responses. The observation method was used in data simulations using OPNET Version 14.5 Simulation software. The results show that the IPSec features increase the size of data packets by approximately 9.98% translating into approximately 90.02% effectiveness. The tests showed that the performance metrics are all well within the recommended standards. The IPSec Based MPLS Virtual private network is more stable and secure than one without IPSec.
文摘The increasing amount and intricacy of network traffic in the modern digital era have worsened the difficulty of identifying abnormal behaviours that may indicate potential security breaches or operational interruptions. Conventional detection approaches face challenges in keeping up with the ever-changing strategies of cyber-attacks, resulting in heightened susceptibility and significant harm to network infrastructures. In order to tackle this urgent issue, this project focused on developing an effective anomaly detection system that utilizes Machine Learning technology. The suggested model utilizes contemporary machine learning algorithms and frameworks to autonomously detect deviations from typical network behaviour. It promptly identifies anomalous activities that may indicate security breaches or performance difficulties. The solution entails a multi-faceted approach encompassing data collection, preprocessing, feature engineering, model training, and evaluation. By utilizing machine learning methods, the model is trained on a wide range of datasets that include both regular and abnormal network traffic patterns. This training ensures that the model can adapt to numerous scenarios. The main priority is to ensure that the system is functional and efficient, with a particular emphasis on reducing false positives to avoid unwanted alerts. Additionally, efforts are directed on improving anomaly detection accuracy so that the model can consistently distinguish between potentially harmful and benign activity. This project aims to greatly strengthen network security by addressing emerging cyber threats and improving their resilience and reliability.