期刊文献+
共找到616篇文章
< 1 2 31 >
每页显示 20 50 100
Unraveling the Fundamental Mechanism of Interface Conductive Network Influence on the Fast‑Charging Performance of SiO‑Based Anode for Lithium‑Ion Batteries 被引量:1
1
作者 Ruirui Zhang Zhexi Xiao +6 位作者 Zhenkang Lin Xinghao Yan Ziying He Hairong Jiang Zhou Yang Xilai Jia Fei Wei 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期53-68,共16页
Progress in the fast charging of high-capacity silicon monoxide(SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion.The construction of an interface conductive network effe... Progress in the fast charging of high-capacity silicon monoxide(SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion.The construction of an interface conductive network effectively addresses the aforementioned problems;however,the impact of its quality on lithium-ion transfer and structure durability is yet to be explored.Herein,the influence of an interface conductive network on ionic transport and mechanical stability under fast charging is explored for the first time.2D modeling simulation and Cryo-transmission electron microscopy precisely reveal the mitigation of interface polarization owing to a higher fraction of conductive inorganic species formation in bilayer solid electrolyte interphase is mainly responsible for a linear decrease in ionic diffusion energy barrier.Furthermore,atomic force microscopy and Raman shift exhibit substantial stress dissipation generated by a complete conductive network,which is critical to the linear reduction of electrode residual stress.This study provides insights into the rational design of optimized interface SiO-based anodes with reinforced fast-charging performance. 展开更多
关键词 Fast charging SiO anode Interface conductive network Ionic transport Mechanical stability
下载PDF
Porous Indium Nanocrystals on Conductive Carbon Nanotube Networks for High-Performance CO_(2)-to-Formate Electrocatalytic Conversion
2
作者 Liangping Xiao Rusen Zhou +4 位作者 Tianqi Zhang Xiaoxiang Wang Renwu Zhou Patrick J.Cullen Kostya(Ken)Ostrikov 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第4期413-421,共9页
Ever-increasing emissions of anthropogenic carbon dioxide(CO_(2))cause global environmental and climate challenges.Inspired by biological photosynthesis,developing effective strategies NeuNlto up-cycle CO_(2)into high... Ever-increasing emissions of anthropogenic carbon dioxide(CO_(2))cause global environmental and climate challenges.Inspired by biological photosynthesis,developing effective strategies NeuNlto up-cycle CO_(2)into high-value organics is crucial.Electrochemical CO_(2)reduction reaction(CO_(2)RR)is highly promising to convert CO_(2)into economically viable carbon-based chemicals or fuels under mild process conditions.Herein,mesoporous indium supported on multi-walled carbon nanotubes(mp-In@MWCNTs)is synthesized via a facile wet chemical method.The mp-In@MWCNTs electrocatalysts exhibit high CO_(2)RR performance in reducing CO_(2)into formate.An outstanding activity(current density-78.5 mA cm^(-2)),high conversion efficiency(Faradaic efficiency of formate over 90%),and persistent stability(∼30 h)for selective CO_(2)-to-formate conversion are observed.The outstanding CO_(2)RR process performance is attributed to the unique structures with mesoporous surfaces and a conductive network,which promote the adsorption and desorption of reactants and intermediates while improving electron transfer.These findings provide guiding principles for synthesizing conductive metal-based electrocatalysts for high-performance CO_(2)conversion. 展开更多
关键词 CO_(2)RR conductive network ELECTROCATALYSTS FORMATE
下载PDF
Constructing Anisotropic Conductive Networks inside Hollow Elastic Fiber with High Sensitivity and Wide‑Range Linearity by Cryo‑spun Drying Strategy
3
作者 Along Zheng Kening Wan +6 位作者 Yuwen Huang Yanyan Ma Tao Ding Yong Zheng Ziyin Chen Qichun Feng Zhaofang Du 《Advanced Fiber Materials》 SCIE EI CAS 2024年第6期1898-1909,共12页
Stretchable conductive fibers composed of conductive materials and elastic substrates have advantages such as braiding abil-ity,electrical conductivity,and high resilience,making them ideal materials for fibrous weara... Stretchable conductive fibers composed of conductive materials and elastic substrates have advantages such as braiding abil-ity,electrical conductivity,and high resilience,making them ideal materials for fibrous wearable strain sensors.However,the weak interface between the conductive materials and elastic substrates restricts fibers flexibility under strain,leading to challenges in achieving both linearity and sensitivity of the as-prepared fibrous strain sensor.Herein,cryo-spun drying strategy is proposed to fabricate the thermoplastic polyurethane(TPU)fiber with anisotropic conductive networks(ACN@TPU fiber).Benefiting from the excellent mechanical properties of TPU,and the excellent interface among TPU,silver nanoparticles(AgNPs)and polyvinyl alcohol(PVA),the prepared ACN@TPU fiber exhibits an outstanding mechanical performance.The anisotropic conductive networks enable the ACN@TPU fiber to achieve high sensitivity(gauge factor,GF=4.68)and excellent linearity within a wide working range(100%strain).Furthermore,mathematical model based on AgNPs is established and the resistance calculation equation is derived,with a highly matched fitting and experimental results(R2=0.998).As a conceptual demonstration,the ACN@TPU fiber sensor is worn on a mannequin to accurately and instantly detect movements.Therefore,the successful construction of ACN@TPU fiber with anisotropic conductive networks through the cryo-spun drying strategy provides a feasible approach for the design and preparation of fibrous strain sensing materials with high linearity and high sensitivity. 展开更多
关键词 Cryo-spun drying Anisotropic conductive networks High sensitivity Wide-range linearity Fibrous wearable strain sensor
原文传递
Flexible Polydimethylsiloxane Composite with Multi-Scale Conductive Network for Ultra-Strong Electromagnetic Interference Protection 被引量:9
4
作者 Jie Li He Sun +5 位作者 Shuang-Qin Yi Kang-Kang Zou Dan Zhang Gan-Ji Zhong Ding-Xiang Yan Zhong-Ming Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第1期293-306,共14页
Highly conductive polymer composites(CPCs) with excellent mechanical flexibility are ideal materials for designing excellent electromagnetic interference(EMI) shielding materials,which can be used for the electromagne... Highly conductive polymer composites(CPCs) with excellent mechanical flexibility are ideal materials for designing excellent electromagnetic interference(EMI) shielding materials,which can be used for the electromagnetic interference protection of flexible electronic devices.It is extremely urgent to fabricate ultra-strong EMI shielding CPCs with efficient conductive networks.In this paper,a novel silver-plated polylactide short fiber(Ag@PL ASF,AAF) was fabricated and was integrated with carbon nanotubes(CNT) to construct a multi-scale conductive network in polydimethylsiloxane(PDMS) matrix.The multi-scale conductive network endowed the flexible PDMS/AAF/CNT composite with excellent electrical conductivity of 440 S m-1and ultra-strong EMI shielding effectiveness(EMI SE) of up to 113 dB,containing only 5.0 vol% of AAF and 3.0 vol% of CNT(11.1wt% conductive filler content).Due to its excellent flexibility,the composite still showed 94% and 90% retention rates of EMI SE even after subjected to a simulated aging strategy(60℃ for 7 days) and 10,000 bending-releasing cycles.This strategy provides an important guidance for designing excellent EMI shielding materials to protect the workspace,environment and sensitive circuits against radiation for flexible electronic devices. 展开更多
关键词 Flexible conductive polymer composites Silver-plated polylactide short fiber Carbon nanotube Electromagnetic interference shielding Multi-scale conductive network
下载PDF
Black Phosphorus/Nanocarbons Constructing a Dual-Carbon Conductive Network for High-Performance Sodium-Ion Batteries 被引量:1
5
作者 Leping Dang Jiawei He Hongyuan Wei 《Transactions of Tianjin University》 EI CAS 2022年第2期132-143,共12页
Black phosphorus has been recognized as a prospective candidate anode material for sodium-ion batteries(SIBs)due to its ultrahigh theoretical capacity of 2596 mA·h/g and high electric conductivity of≈300 S/m.How... Black phosphorus has been recognized as a prospective candidate anode material for sodium-ion batteries(SIBs)due to its ultrahigh theoretical capacity of 2596 mA·h/g and high electric conductivity of≈300 S/m.However,its large volume expansion and contraction during sodiation/desodiation lead to poor cycling stability.In this work,a BP/graphite nanoparticle/nitrogen-doped multiwalled carbon nanotubes(BP/G/CNTs)composite with a dual-carbon conductive network is successfully fabricated as a promising anode material for SIBs through a simple two-step mechanical milling process.The unique structure can mitigate the eff ect of volume changes and provide additional electron conduction pathways during cycles.Furthermore,the formation of P–O–C bonds helps maintain the intimate connection between phosphorus and carbon,thereby improving the cycling and rate performance.As a result,the BP/G/CNTs composite delivers a high initial Coulombic efficiency(89.6%)and a high specific capacity for SIBs(1791.3 mA·h/g after 100 cycles at 519.2 mA/g and 1665.2 mA·h/g after 100 cycles at 1298 mA/g).Based on these results,the integrated strategy of one-and two-dimensional carbon materials can guide other anode materials for SIBs. 展开更多
关键词 Sodium-ion batteries Anode material Black phosphorus Ball milling Carbon conductive network
下载PDF
Mapping Soil Electrical Conductivity Using Ordinary Kriging Combined with Back-propagation Network 被引量:6
6
作者 HUANG Yajie LI Zhen +4 位作者 YE Huichun ZHANG Shiwen ZHUO Zhiqing XING An HUANG Yuanfang 《Chinese Geographical Science》 SCIE CSCD 2019年第2期270-282,共13页
Accurate mapping of soil salinity and recognition of its influencing factors are essential for sustainable crop production and soil health. Although the influencing factors have been used to improve the mapping accura... Accurate mapping of soil salinity and recognition of its influencing factors are essential for sustainable crop production and soil health. Although the influencing factors have been used to improve the mapping accuracy of soil salinity, few studies have considered both aspects of spatial variation caused by the influencing factors and spatial autocorrelations for mapping. The objective of this study was to demonstrate that the ordinary kriging combined with back-propagation network(OK_BP), considering the two aspects of spatial variation, which can benefit the improvement of the mapping accuracy of soil salinity. To test the effectiveness of this approach, 70 sites were sampled at two depths(0–30 and 30–50 cm) in Ningxia Hui Autonomous Region, China. Ordinary kriging(OK), back-propagation network(BP) and regression kriging(RK) were used in comparison analysis; the root mean square error(RMSE), relative improvement(RI) and the decrease in estimation imprecision(DIP) were used to judge the mapping quality. Results showed that OK_BP avoided the both underestimation and overestimation of the higher and lower values of interpolation surfaces. OK_BP revealed more details of the spatial variation responding to influencing factors, and provided more flexibility for incorporating various correlated factors in the mapping. Moreover, OK_BP obtained better results with respect to the reference methods(i.e., OK, BP, and RK) in terms of the lowest RMSE, the highest RI and DIP. Thus, it is concluded that OK_BP is an effective method for mapping soil salinity with a high accuracy. 展开更多
关键词 ordinary KRIGING NEURAL network SOIL electrical conductIVITY VARIABILITY MAPPING Ningxia China
下载PDF
Correlating thermal conductivity of pure hydrocarbons and aromatics via perceptron artificial neural network (PANN) method 被引量:2
7
作者 Mostafa Lashkarbolooki Ali Zeinolabedini Hezave Mahdi Bayat 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第5期547-554,共8页
Accurate estimation of liquid thermal conductivity is highly necessary to appropriately design equipments in different industries. Respect to this necessity, in the current investigation a feed-forward artificial neur... Accurate estimation of liquid thermal conductivity is highly necessary to appropriately design equipments in different industries. Respect to this necessity, in the current investigation a feed-forward artificial neural network(ANN) model is examined to correlate the liquid thermal conductivity of normal and aromatic hydrocarbons at the temperatures range of 257–338 K and atmospheric pressure. For this purpose, 956 experimental thermal conductivities for normal and aromatic hydrocarbons are collected from different previously published literature.During the modeling stage, to discriminate different substances, critical temperature(Tc), critical pressure(Pc)and acentric factor(ω) are utilized as the network inputs besides the temperature. During the examination, effects of different transfer functions and number of neurons in hidden layer are investigated to find the optimum network architecture. Besides, statistical error analysis considering the results obtained from available correlations and group contribution methods and proposed neural network is performed to reliably check the feasibility and accuracy of the proposed method. Respect to the obtained results, it can be concluded that the proposed neural network consisted of three layers namely, input, hidden and output layers with 22 neurons in hidden layer was the optimum ANN model. Generally, the proposed model enables to correlate the thermal conductivity of normal and aromatic hydrocarbons with absolute average relative deviation percent(AARD), mean square error(MSE), and correlation coefficient(R^2) of lower than 0.2%, 1.05 × 10^(-7) and 0.9994, respectively. 展开更多
关键词 Thermal conductivity Artificial neural network Critical properties Hydrocarbons Aromatics
下载PDF
Fuzzy neural network analysis on gray cast iron with high tensile strength and thermal conductivity 被引量:1
8
作者 Gui-quan Wang Xiang Chen Yan-xiang Li 《China Foundry》 SCIE 2019年第3期190-197,共8页
To develop a high performance gray cast iron with high tensile strength and thermal conductivity, multivariable analysis of microstructural effects on properties of gray cast iron was performed. The concerned paramete... To develop a high performance gray cast iron with high tensile strength and thermal conductivity, multivariable analysis of microstructural effects on properties of gray cast iron was performed. The concerned parameters consisted of graphite content, maximum graphite length, primary dendrite percentage and microhardness of the matrix. Under the superposed influence of various parameters, the relationships between thermal conductivity and structural characteristics become irregular, as well as the effects of graphite length on the strength. An adaptive neuro-fuzzy inference system was built to link the parameters and properties. A sensitivity test was then performed to rank the relative impact of parameters. It was found that the dominant parameter for tensile strength is graphite content, while the most relative parameter for thermal conductivity is maximum graphite length. The most effective method to simultaneously improve the tensile and thermal conductivity of gray cast iron is to reduce the carbon equivalent and increase the length of graphite flakes. 展开更多
关键词 HIGH performance GRAY CAST iron fuzzy NEURAL network TENSILE strength thermal conductIVITY
下载PDF
Temperature dependence of heat conduction coefficient in nanotube/nanowire networks
9
作者 熊科诏 刘宗华 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第9期571-576,共6页
Studies on heat conduction are so far mainly focused on regular systems such as the one-dimensional(1D) and twodimensional(2D) lattices where atoms are regularly connected and temperatures of atoms are homogeneous... Studies on heat conduction are so far mainly focused on regular systems such as the one-dimensional(1D) and twodimensional(2D) lattices where atoms are regularly connected and temperatures of atoms are homogeneously distributed.However, realistic systems such as the nanotube/nanowire networks are not regular but heterogeneously structured, and their heat conduction remains largely unknown. We present a model of quasi-physical networks to study heat conduction in such physical networks and focus on how the network structure influences the heat conduction coefficient κ. In this model,we for the first time consider each link as a 1D chain of atoms instead of a spring in the previous studies. We find that κ is different from link to link in the network, in contrast to the same constant in a regular 1D or 2D lattice. Moreover, for each specific link, we present a formula to show how κ depends on both its link length and the temperatures on its two ends.These findings show that the heat conduction in physical networks is not a straightforward extension of 1D and 2D lattices but seriously influenced by the network structure. 展开更多
关键词 heat conduction nanotube/nanowire complex network one-dimensional(1D) lattice
下载PDF
IONIC CONDUCTIVITY IN CROSSLINKED POLY (METHYLSILOXANE-g-ETHYLENE OXIDE) NETWORK FILMS CONTAINING LITHIUM PERCHLORATE
10
作者 方世璧 刘利 +1 位作者 李永军 江英彦 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 1989年第3期207-211,共5页
Polymer electrolytes based on poly (methylsiloxane-g-ethylene oxide) and LiClO_4 have been prepared. The network films crosslinked by a crosslinking agent are found to exhibit a considerably high ionic conductivity of... Polymer electrolytes based on poly (methylsiloxane-g-ethylene oxide) and LiClO_4 have been prepared. The network films crosslinked by a crosslinking agent are found to exhibit a considerably high ionic conductivity of about 10^(-4) Scm^(-1) at room temperature and have good flexibility. 展开更多
关键词 Polymer electrolytes Poly(methylsiloxane-g-ethylene oxide) network film Ionic conductivity.
下载PDF
VISCOELASTICITY AND IONIC CONDUCTIVITY OF TWO-COMPONENT EPOXY NETWORK CONTAINING LITHIUM PERCHLORATE
11
作者 彭新生 巴恒飞 +2 位作者 乔自文 陈东霖 王佛松 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 1991年第2期120-129,共10页
Polymeric solid electrolyte system composed of triglycidyl ether of glycerol (TGEG), diglycidyl ether of polyethylene glycol (DGEPEG)and LiClO_4 salt were synthesized. In this' system the electrolyte has a pecular... Polymeric solid electrolyte system composed of triglycidyl ether of glycerol (TGEG), diglycidyl ether of polyethylene glycol (DGEPEG)and LiClO_4 salt were synthesized. In this' system the electrolyte has a pecularity that not merely can the LiClO_4 provide ionic carriers, but also catalyze the crosslinking reaction without adding an usual curing agent. The effect of salt content and degree of crosslinking on the viscoelasticity and ionic conductivity were studied. Both WLF and VTF equations were used to treat the experimental data in order to elucidate the mechanism of ionic conduction. It was found that the ionic conductivity of the system is carded out through the segmental motion mechanism. However, the data must be treated with care. For example, in evaluating WLF parameters, the contribution concerned with ionic carrier generation with temperature to the conductivity must be differentiated from that concerned with segmental motion. Besides, the temperature range suitable to WLF equation must also be considered. For VTF equation, it might be inapplicable ff the temperature is too low and close to the glass transition temperature of the specimen. Further study is needed in order to have a quantitative information on the limitation of these equations. 展开更多
关键词 Polymeric solid electrolyte Two-component epoxy network / LiClO_4 complex VISCOELASTICITY Ionic conductivity.
下载PDF
Analysis of thermal conductivity in tree-like branched networks
12
作者 寇建龙 陆杭军 +1 位作者 吴锋民 许友生 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第4期1553-1559,共7页
Asymmetric tree-like branched networks are explored by geometric algorithms. Based on the network, an analysis of the thermal conductivity is presented. The relationship between effective thermal conductivity and geom... Asymmetric tree-like branched networks are explored by geometric algorithms. Based on the network, an analysis of the thermal conductivity is presented. The relationship between effective thermal conductivity and geometric structures is obtained by using the thermal-electrical analogy technique. In all studied cases, a clear behaviour is observed, where angle (δ,θ) among parent branching extended lines, branches and parameter of the geometric structures have stronger effects on the effective thermal conductivity. When the angle δ is fixed, the optical diameter ratio β+ is dependent on angle θ. Moreover, γand m are not related to β*. The longer the branch is, the smaller the effective thermal conductivity will be. It is also found that when the angle θ〈δ2, the higher the iteration m is, the lower the thermal conductivity will be and it tends to zero, otherwise, it is bigger than zero. When the diameter ratio β1 〈 0.707 and angle δ is bigger, the optimal k of the perfect ratio increases with the increase of the angle δ; when β1 〉 0.707, the optimal k decreases. In addition, the effective thermal conductivity is always less than that of single channel material. The present results also show that the effective thermal conductivity of the asymmetric tree-like branched networks does not obey Murray's law. 展开更多
关键词 effective thermal conductivity asymmetric tree-like branched networks geometric parameters
下载PDF
IONIC CONDUCTIVITY OF EPOXY NETWORK/POLYETHYLENE GLYCOL- LITHIUM PERCHLORATE COMPLEX IPN SYSTEM
13
作者 彭新生 宋永贤 +3 位作者 綦玉臣 吴淑云 李丽霞 陈东霖 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 1990年第4期342-346,共5页
In an attempt to prepare a polymeric solid electrolyte with both high ionic conductivity at ambient temperature and adequate mechanical strength, an ionic conducting IPN composed of bisphenol A epoxy resin/polyethylen... In an attempt to prepare a polymeric solid electrolyte with both high ionic conductivity at ambient temperature and adequate mechanical strength, an ionic conducting IPN composed of bisphenol A epoxy resin/polyethylene glycol containing LiClO_4 was synthesized. The dependence of conductivity was investigated as a function of salt content, composition and temperature. It has been revealed that a maximum of conductivity appeared when EO/Li=25, where EO denotes the—(CH_2CH_2O)-unit in polyethylene glycol, and that the temperature dependence of conductivity followed VTF equation, suggesting that the motion of ionic carriers resulted from the segmental motion of the polymer. When glycerol epoxy resin was used instead of bisphenol A epoxy, the ambient temperature (25℃) conductivity could somewhat further be raised up to 3×10^(-5) S/cm. 展开更多
关键词 Polymeric solid electrolyte Epoxy resin network Polyethylene glycol-lithium perchlorate complex Ionic conductivity.
下载PDF
Ultrafast battery heat dissipation enabled by highly ordered and interconnected hexagonal boron nitride thermal conductive composites 被引量:1
14
作者 Zhuoya Wang Kaihang Zhang +4 位作者 Bing Zhang Zheming Tong Shulan Mao Hao Bai Yingying Lu 《Green Energy & Environment》 SCIE EI CSCD 2022年第6期1401-1410,共10页
Heat dissipation involved safety issues are crucial for industrial applications of the high-energy density battery and fast charging technology.While traditional air or liquid cooling methods suffering from space limi... Heat dissipation involved safety issues are crucial for industrial applications of the high-energy density battery and fast charging technology.While traditional air or liquid cooling methods suffering from space limitation and possible leakage of electricity during charge process,emerging phase change materials as solid cooling media are of growing interest.Among them,paraffin wax(PW)with large latent heat capacity and low cost is desirable for heat dissipation and thermal management which mainly hindered by their relatively low thermal conductivity and susceptibility to leakage.Here,highly ordered and interconnected hexagonal boron nitride(h-BN)networks were established via ice template method and introduced into PW to enhance the thermal conductivity.The composite with 20 wt%loading amount of h-BN can guarantee a highly ordered network and exhibited high thermal conductivity(1.86 W m^(-1) K^(-1))which was 4 times larger compared with that of random dispersed h-BN involved PW and nearly 8 times larger compared with that of bare PW.The optimal thermal conductive composites demonstrated ultrafast heat dissipation as well as leakage resistance for lithium-ion batteries(LIBs),heat generated by LIBs can be effectively transferred under the working state and the surface temperature kept 6.9℃ lower at most under 2–5℃ continuous charge-discharge process compared with that of bare one which illustrated great potential for industrial thermal management. 展开更多
关键词 Hexagonal boron nitride Paraffin wax Lithium-ion batteries Thermal conductive network Battery heat dissipation
下载PDF
Resistivity-temperature Characteristics of Conductive Asphalt Concrete 被引量:1
15
作者 孙文州 LI Xu +1 位作者 杨群 ZHANG Hongwei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第2期367-371,共5页
The changes of resistivity of conductive asphalt concrete at different temperatures were studied,and positive temperature coefficient(PTC)modelwas established to estimate the influence of temperature on the resistiv... The changes of resistivity of conductive asphalt concrete at different temperatures were studied,and positive temperature coefficient(PTC)modelwas established to estimate the influence of temperature on the resistivity quantitatively,which eliminated the interference with conductivity evaluation brought by temperature variation.Finally,the analysis of temperature cycling test results proves that the changes of percolation network structure caused by temperature variation prompt the emergence of PTC of conductive asphalt concrete. 展开更多
关键词 conductive asphalt concrete electrical resistivity positive temperature coefficient percolation network
下载PDF
Conductive Polymer Composites Fabricated by Disposable Face Masks and Multi-Walled Carbon Nanotubes: Crystalline Structure and Enhancement Effect
16
作者 Meng Xiang Zhou Yang +5 位作者 Jingjing Yang Tong Lu Danqi Wu Zhijun Liu Rongjie Xue Shuang Dong 《Journal of Renewable Materials》 SCIE EI 2022年第3期821-831,共11页
Influenced by recent COVID-19,wearing face masks to block the spread of the epidemic has become the simplest and most effective way.However,after the people wear masks,thousands of tons of medical waste by used dis-po... Influenced by recent COVID-19,wearing face masks to block the spread of the epidemic has become the simplest and most effective way.However,after the people wear masks,thousands of tons of medical waste by used dis-posable masks will be generated every day in the world,causing great pressure on the environment.Herein,con-ductive polymer composites are fabricated by simple melt blending of mask fragments(mask polypropylene,short for mPP)and multi-walled carbon nanotubes(MWNTs).MWNTs were used as modifiers for composites because of their high strength and high conductivity.The crystalline structure,mechanical,electrical and thermal enhancement effect of the composites were investigated.MWNTs with high thermal stability acted the role of promoting the crystallisation of mPP by expediting the crystalline nucleation,leading to the improvement of amount for crystalline nucleus.MWNTs fibers interpenetrate with each other in mPP matrix to form conducting network.With 2.0 wt% MWNTs loading,the tensile strength and electrical conductivity of the composites were increased by 809% and 7 orders of magnitude.MWNTs fibers interpenetrate with each other in mPP matrix to form conducting network.Thus,more conducting paths were constructed to transport carriers.The findings may open a way for high value utilization of the disposable masks. 展开更多
关键词 Disposable face masks multi-walled carbon nanotubes crystalline structure mechanical enhancement effect conducting network
下载PDF
Biomimic Vein-Like Transparent Conducting Electrodes with Low Sheet Resistance and Metal Consumption
17
作者 Guobin Jia Jonathan Plentz +4 位作者 Andrea Dellith Christa Schmidt Jan Dellith Gabriele Schmidl Gudrun Andr? 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第2期47-59,共13页
In this contribution,inspired by the excellent resource management and material transport function of leaf veins,the electrical transport function of metallized leaf veins is mimicked from the material transport funct... In this contribution,inspired by the excellent resource management and material transport function of leaf veins,the electrical transport function of metallized leaf veins is mimicked from the material transport function of the vein networks.By electroless copper plating on real leaf vein networks with copper thickness of only several hundred nanometre up to several micrometre,certain leaf veins can be converted to transparent conductive electrodes with an ultralow sheet resistance 100 times lower than that of state-of-the-art indium tin oxide thin films,combined with a broadband optical transmission of above 80%in the UV–VIS–IR range.Additionally,the resource efficiency of the vein-like electrode is characterized by the small amount of material needed to build up the networks and the low copper consumption during metallization.In particular,the high current density transport capability of the electrode of>6000 A cm^−2 was demonstrated.These superior properties of the vein-like structures inspire the design of high-performance transparent conductive electrodes without using critical materials and may significantly reduce the Ag consumption down to<10%of the current level for mass production of solar cells and will contribute greatly to the electrode for high power density concentrator solar cells,high power density Li-ion batteries,and supercapacitors. 展开更多
关键词 Biomimic leaf vein network Transparent conducting electrode Sheet resistance Metal consumption
下载PDF
A Molecular Description of Superconductivity of Sulfur Hydride and Related Systems under High-Pressure Conditions 被引量:1
18
作者 Henk M. Buck 《Open Journal of Physical Chemistry》 2017年第1期9-25,共17页
It has been shown that the recently discovered sulfur trihydride (H3S) can be considered as a superconductor with a transition temperature Tc of 203 Kelvin (K) at 155 GigaPascals (GPa). This is the highest Tc value re... It has been shown that the recently discovered sulfur trihydride (H3S) can be considered as a superconductor with a transition temperature Tc of 203 Kelvin (K) at 155 GigaPascals (GPa). This is the highest Tc value reported for any superconductor. The established superconductivity occurs via the formation of a molecular system with sulfur atoms arranged on a body-centered cubic lattice. It has been generally accepted that the high Tc value is the result of an efficient electron-phonon interaction. The responsible substance formed by H2S under high pressure, may be considered as a compound with H3S stoichiometry creating an impressive network with hydrogens. We will focus on the hydrogen bonding between sulfur and hydrogens demonstrating a symmetrical arrangement. The geometry of the individual radical compound in relation to corresponding systems will be discussed. Ab initio calculations based on a linear three-center two-, three- and four-electron type of bonding clearly visualized in combination with the dynamics of the Van’t Hoff concept, as described by us in various papers, give a good description of this exclusive network. We also discuss the superconductivity of related phosphorus hydrides and focus on the stability and geometrical differences with respect to the H3S system. These differences are significant, demonstrating the diversity in various structures in showing superconductivity. 展开更多
关键词 Super conductivity High-Pressure networks PROTON Bonding Configurational TRANSITIONS in Extended SYSTEMS
下载PDF
PREPARATION OF STAR NETWORK PEG-BASED GEL POLYMER ELECTROLYTES FOR ELECTROCHROMIC DEVICES
19
作者 Gong, Yong-feng Fu, Xiang-kai +1 位作者 Zhang, Shu-peng Jiang, Qing-Long 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2008年第1期91-97,共7页
An amorphous,colorless,and highly transparent star network polymer with a pentaerythritol core linking four PEG-block polymeric arms was synthesized from the poly(ethylene glycol)(PEG),pentaerythritol,and dichlorometh... An amorphous,colorless,and highly transparent star network polymer with a pentaerythritol core linking four PEG-block polymeric arms was synthesized from the poly(ethylene glycol)(PEG),pentaerythritol,and dichloromethane by Williamson reaction.FTIR and ~1H-NMR measurement demonstrated that the polymer repeating units were C[CH_2-OCH_2O-(CH_2CH_2O)_m-CH_2O-(CH_2CH_2O)_n-CH_2O]_4.The polymer host held well mechanical properties for pentaerythritol cross-linking.The gel polymer electrolytes based on Lithium pe... 展开更多
关键词 Ionic conductivity Star network polymer Gel polymer electrolytes Electrochromic devices
下载PDF
基于GA-BP神经网络模型预测水基炭黑-胶原蛋白纳米流体热导率和黏度
20
作者 李凯 魏鹤琳 +6 位作者 尹志凡 左夏华 于晓宇 尹宏远 杨卫民 阎华 安瑛 《化工进展》 EI CAS CSCD 北大核心 2024年第7期4138-4147,共10页
纳米流体由于其独特的强化传热性能,已广泛应用于各个领域。而热导率和黏度直接影响纳米流体在实际工程中的适用性,因此在考察纳米流体的强化传热特性前首先要分析研究其热导率和黏度。本研究利用炭黑和胶原蛋白,采用两步法制备了水基... 纳米流体由于其独特的强化传热性能,已广泛应用于各个领域。而热导率和黏度直接影响纳米流体在实际工程中的适用性,因此在考察纳米流体的强化传热特性前首先要分析研究其热导率和黏度。本研究利用炭黑和胶原蛋白,采用两步法制备了水基炭黑胶原蛋白纳米流体。实验分析了炭黑和胶原蛋白质量分数、温度对纳米流体热导率和黏度的影响。采用灰色关联方法对这些参数的权重进行了数学计算,基于实验数据建立了三输入两输出的BP神经网络预测模型,并利用遗传算法(GA)对BP模型进行优化。结果表明,遗传算法优化后的BP神经网络模型对预测输出具有更高的准确性和更好的稳定性,回归系数和最大偏差分别为0.99918和0.002。本研究不仅对于理解和控制水基炭黑-胶原蛋白纳米流体的热物理性能有重要意义,而且为工程设计和材料科学等方面的应用提供了新思路。 展开更多
关键词 纳米流体 炭黑 胶原蛋白 BP神经网络 热导率 黏度
下载PDF
上一页 1 2 31 下一页 到第
使用帮助 返回顶部