期刊文献+
共找到401篇文章
< 1 2 21 >
每页显示 20 50 100
Fully Distributed Learning for Deep Random Vector Functional-Link Networks
1
作者 Huada Zhu Wu Ai 《Journal of Applied Mathematics and Physics》 2024年第4期1247-1262,共16页
In the contemporary era, the proliferation of information technology has led to an unprecedented surge in data generation, with this data being dispersed across a multitude of mobile devices. Facing these situations a... In the contemporary era, the proliferation of information technology has led to an unprecedented surge in data generation, with this data being dispersed across a multitude of mobile devices. Facing these situations and the training of deep learning model that needs great computing power support, the distributed algorithm that can carry out multi-party joint modeling has attracted everyone’s attention. The distributed training mode relieves the huge pressure of centralized model on computer computing power and communication. However, most distributed algorithms currently work in a master-slave mode, often including a central server for coordination, which to some extent will cause communication pressure, data leakage, privacy violations and other issues. To solve these problems, a decentralized fully distributed algorithm based on deep random weight neural network is proposed. The algorithm decomposes the original objective function into several sub-problems under consistency constraints, combines the decentralized average consensus (DAC) and alternating direction method of multipliers (ADMM), and achieves the goal of joint modeling and training through local calculation and communication of each node. Finally, we compare the proposed decentralized algorithm with several centralized deep neural networks with random weights, and experimental results demonstrate the effectiveness of the proposed algorithm. 展开更多
关键词 Distributed Optimization Deep Neural network Random Vector functional-Link (RVFL) network Alternating Direction method of Multipliers (ADMM)
下载PDF
Linearization Learning Method of BP Neural Networks 被引量:4
2
作者 Zhou Shaoqian Ding Lixin +1 位作者 Zhang Jian Tang Xinhua 《Wuhan University Journal of Natural Sciences》 CAS 1997年第1期37-41,共5页
Feedforward multi layer neural networks have very strong mapping capability that is based on the non linearity of the activation function, however, the non linearity of the activation function can cause the multiple ... Feedforward multi layer neural networks have very strong mapping capability that is based on the non linearity of the activation function, however, the non linearity of the activation function can cause the multiple local minima on the learning error surfaces, which affect the learning rate and solving optimal weights. This paper proposes a learning method linearizing non linearity of the activation function and discusses its merits and demerits theoretically. 展开更多
关键词 BP neural networks activation function linearization method
下载PDF
Study on Decision Method of Neutral Point Grounding Mode for Medium-Voltage Distribution Network 被引量:2
3
作者 Hengyong Liu Xiaofu Xiong +3 位作者 Jinxin Ouyang Xiufen Gong Yinghua Xie Jing Li 《Journal of Power and Energy Engineering》 2014年第4期656-664,共9页
The neutral grounding mode of medium-voltage distribution network decides the reliability, overvoltage, relay protection and electrical safety. Therefore, a comprehensive consideration of the reliability, safety and e... The neutral grounding mode of medium-voltage distribution network decides the reliability, overvoltage, relay protection and electrical safety. Therefore, a comprehensive consideration of the reliability, safety and economy is particularly important for the decision of neutral grounding mode. This paper proposes a new decision method of neutral point grounding mode for mediumvoltage distribution network. The objective function is constructed for the decision according the life cycle cost. The reliability of the neutral point grounding mode is taken into account through treating the outage cost as an operating cost. The safety condition of the neutral point grounding mode is preserved as the constraint condition of decision models, so the decision method can generate the most economical and reliable scheme of neutral point grounding mode within a safe limit. The example is used to verify the feasibility and effectiveness of the decision method. 展开更多
关键词 Distribution network NEUTRAL GROUNDING MODE RELIABILITY DECISION method Objective function
下载PDF
A data-derived soft-sensor method for monitoring effluent total phosphorus 被引量:5
4
作者 Shuguang Zhu Honggui Han +1 位作者 Min Guo Junfei Qiao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第12期1791-1797,共7页
The effluent total phosphorus(ETP) is an important parameter to evaluate the performance of wastewater treatment process(WWTP). In this study, a novel method, using a data-derived soft-sensor method, is proposed to ob... The effluent total phosphorus(ETP) is an important parameter to evaluate the performance of wastewater treatment process(WWTP). In this study, a novel method, using a data-derived soft-sensor method, is proposed to obtain the reliable values of ETP online. First, a partial least square(PLS) method is introduced to select the related secondary variables of ETP based on the experimental data. Second, a radial basis function neural network(RBFNN) is developed to identify the relationship between the related secondary variables and ETP. This RBFNN easily optimizes the model parameters to improve the generalization ability of the soft-sensor. Finally, a monitoring system, based on the above PLS and RBFNN, named PLS-RBFNN-based soft-sensor system, is developed and tested in a real WWTP. Experimental results show that the proposed monitoring system can obtain the values of ETP online and own better predicting performance than some existing methods. 展开更多
关键词 Data-derived soft-sensor Effluent total phosphorus Wastewater treatment process Radial basis function neural network Partial least square method
下载PDF
New Robust Exponential Stability Analysis for Uncertain Neural Networks with Time-varying Delay 被引量:3
5
作者 Yong-Gang Chen Wei-Ping Bi 《International Journal of Automation and computing》 EI 2008年第4期395-400,共6页
In this paper,the global robust exponential stability is considered for a class of neural networks with parametric uncer- tainties and time-varying delay.By using Lyapunov functional method,and by resorting to the new... In this paper,the global robust exponential stability is considered for a class of neural networks with parametric uncer- tainties and time-varying delay.By using Lyapunov functional method,and by resorting to the new technique for estimating the upper bound of the derivative of the Lyapunov functional,some less conservative exponential stability criteria are derived in terms of linear matrix inequalities (LMIs).Numerical examples are presented to show the effectiveness of the proposed method. 展开更多
关键词 Robust exponential stability uncertain neural networks time-varying delay Lyapunov functional method linear matrix inequalities (LMIs).
下载PDF
A global optimization algorithm based on multi-loop neural network control
6
作者 LU Baiquan NI Chenlong +1 位作者 ZHENG Zhongwei LIU Tingzhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第5期1007-1024,共18页
This paper proposes an optimization algorithm based on a multi-loop control system with a neural network controller,in which the objective function that is used is the control plant of each sub-control system.To obtai... This paper proposes an optimization algorithm based on a multi-loop control system with a neural network controller,in which the objective function that is used is the control plant of each sub-control system.To obtain the global optimization solution from a control plant that has many local minimum points,a transformation function is presented.On the one hand,this approach changes a complex objective function into a simple function under the condition of an unchanged globally optimal solution,to find the global optimization solution more easily by using a multi-loop control system.On the other hand,a special neural network(in which the node function can be simply positioned locally)that is composed of multiple transformation functions is used as the controller,which reduces the possibility of falling into local minimum points.At the same time,a filled function is presented as a control law;it can jump out of a local minimum point and move to another local minimum point that has a smaller value of the objective function.Finally,18 simulation examples are provided to show the effectiveness of the proposed method. 展开更多
关键词 GLOBAL optimization NEURAL networks control system TRANSFORMATION function FILLED function method
下载PDF
Multi-Cultural Dynamics on Social Networks under External Random Perturbations
7
作者 J. Chandra G. S. Ladde 《International Journal of Communications, Network and System Sciences》 2014年第6期181-195,共15页
This work deals with the development of multi-cultural network-centric dynamic models under the influence of personal intra- and inter-members, as well as community. Each individual member of a society is influenced b... This work deals with the development of multi-cultural network-centric dynamic models under the influence of personal intra- and inter-members, as well as community. Each individual member of a society is influenced by her/his interactions with fellow members of the family, neighborhood, region and the universe. The behavior of such complex and highly interacting social networks is characterized by stochastic interconnected dynamical systems. The primary goal is on laying down an investigation of both qualitative and quantitative properties of this network dynamical system. In particular, we would like to determine the regions of conflicts and coexietence as well as to establish the cohesion and stability of emerging states. This is achieved by employing the method of system of differential inequalities and comparison theorems in the context of the energy function. The developed energy function method provides estimates for regions of conflict and cooperation. Moreover, the method also provides sufficient conditions for the community cohesion and stability in a systematic way. 展开更多
关键词 AFFINITY Matrix CULTURAL State Gaussian PROCESS Mono-Cultural network Multi-Cultural network MOVING Isotropic CENTER Energy function method Stochastic PROCESS MOVING CENTER
下载PDF
一种面向SDN的传统网络功能集成方法设计与实现 被引量:1
8
作者 郑友伟 朱晓东 +1 位作者 刘磊 郑策 《电子设计工程》 2024年第8期23-26,31,共5页
软件定义网络(SDN)通过将控制平面与数据平面分离并使网络可编程来改变网络的管理方式。控制器是SDN网络的关键组成部分。对于诸如DHCP中继功能、动态路由功能等传统网络功能,目前已存在成熟的第三方网络组件。基于能够更便捷地开发面向... 软件定义网络(SDN)通过将控制平面与数据平面分离并使网络可编程来改变网络的管理方式。控制器是SDN网络的关键组成部分。对于诸如DHCP中继功能、动态路由功能等传统网络功能,目前已存在成熟的第三方网络组件。基于能够更便捷地开发面向SDN的传统网络应用,设计与实现一种通用的传统网络功能集成方法,该方法通过将底层网络流量同步给第三方网络组件,由第三方网络组件完成核心的网络功能。文中基于ONOS控制器利用该集成方法开发了一款通用的传统网络应用,并通过集成DHCP Relay功能的实验完成了对该集成方法的功能性验证。 展开更多
关键词 软件定义网络 控制器 传统网络功能 集成方法 第三方功能组件
下载PDF
An Algorithm to Determine RBFNN’s Center Based on the Improved Density Method
9
作者 Mingwen Zheng Yanping Zhang 《Open Journal of Applied Sciences》 2014年第1期1-5,共5页
It takes more time and is easier to fall into the local minimum value when using the traditional full-supervised learning algorithm to train RBFNN. Therefore, the paper proposes one algorithm to determine the RBFNN’s... It takes more time and is easier to fall into the local minimum value when using the traditional full-supervised learning algorithm to train RBFNN. Therefore, the paper proposes one algorithm to determine the RBFNN’s data center based on the improvement density method. First it uses the improved density method to select RBFNN’s data center, and calculates the expansion constant of each center, then only trains the network weight with the gradient descent method. To compare this method with full-supervised gradient descent method, the time not only has obvious reduction (including to choose data center’s time by density method), but also obtains better classification results when using the data set in UCI to carry on the test to the network. 展开更多
关键词 RADIAL BASIS function Neural network Data CENTER EXPANSION CONSTANT Density method Full-Supervised ALGORITHM
下载PDF
THE MESHLESS VIRTUAL BOUNDARY METHOD AND ITS APPLICATIONS TO 2D ELASTICITY PROBLEMS 被引量:3
10
作者 Sun Haitao Wang Yuanhan 《Acta Mechanica Solida Sinica》 SCIE EI 2007年第1期30-40,共11页
A novel numerical method for eliminating the singular integral and boundary effect is processed. In the proposed method, the virtual boundaries corresponding to the numbers of the true boundary arguments are chosen to... A novel numerical method for eliminating the singular integral and boundary effect is processed. In the proposed method, the virtual boundaries corresponding to the numbers of the true boundary arguments are chosen to be as simple as possible. An indirect radial basis function network (IRBFN) constructed by functions resulting from the indeterminate integral is used to construct the approaching virtual source functions distributed along the virtual boundaries. By using the linear superposition method, the governing equations presented in the boundaries integral equations (BIE) can be established while the fundamental solutions to the problems are introduced. The singular value decomposition (SVD) method is used to solve the governing equations since an optimal solution in the least squares sense to the system equations is available. In addition, no elements are required, and the boundary conditions can be imposed easily because of the Kronecker delta function properties of the approaching functions. Three classical 2D elasticity problems have been examined to verify the performance of the method proposed. The results show that this method has faster convergence and higher accuracy than the conventional boundary type numerical methods. 展开更多
关键词 numerical method singular integral boundary effect radial basis function networks integral equation virtual boundary source function singular value decomposition
下载PDF
不确定电液伺服系统的时变输出约束自适应滤波控制
11
作者 潘昌忠 何广 +2 位作者 李智靖 周兰 熊培银 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第6期1819-1828,共10页
针对电液伺服系统位置跟踪控制中存在的输出约束和不确定性问题,提出一种基于正切型时变障碍Lyapunov函数的输出约束自适应滤波控制方法。构造具有时变约束边界的正切型时变障碍Lyapunov函数,通过时变边界函数的参数设置,使系统输出具... 针对电液伺服系统位置跟踪控制中存在的输出约束和不确定性问题,提出一种基于正切型时变障碍Lyapunov函数的输出约束自适应滤波控制方法。构造具有时变约束边界的正切型时变障碍Lyapunov函数,通过时变边界函数的参数设置,使系统输出具有较好的瞬态和稳态性能;设计径向基函数(RBF)神经网络及权重自适应学习律,在线逼近由模型不确定性和未知干扰组成的复合干扰,并将逼近值用于反馈控制;采用二阶指令滤波反步法设计状态反馈控制律和误差补偿机制,避免反步设计中“计算爆炸”的问题,同时消除滤波误差,提高系统位置跟踪精度;依据Lyapunov稳定性理论证明闭环系统中所有误差信号的收敛性。仿真结果表明:系统的稳态误差在所提方法下约为3.48×10^(-8)m,相比于其他控制方法,跟踪误差始终约束在时变的约束边界内,跟踪精度和控制性能均得到提升。 展开更多
关键词 电液伺服系统 时变障碍Lyapunov函数 径向基函数神经网络 指令滤波 误差补偿 反步法
下载PDF
基于改进残差网络的运动目标模糊图像复原方法
12
作者 孙灵 《现代电子技术》 北大核心 2024年第15期86-90,共5页
传统的残差网络在复原运动目标模糊图像时,在模糊程度较严重的情况下,存在特征提取不充分、噪声干扰等问题,导致恢复出的图像无法完全达到原始图像的清晰度和细节。对此,提出基于改进残差网络的运动目标模糊图像复原方法。对采集到的运... 传统的残差网络在复原运动目标模糊图像时,在模糊程度较严重的情况下,存在特征提取不充分、噪声干扰等问题,导致恢复出的图像无法完全达到原始图像的清晰度和细节。对此,提出基于改进残差网络的运动目标模糊图像复原方法。对采集到的运动目标模糊图像,采用多损失函数融合方法改进传统残差块结构,构建编码器-解码器网络训练结构,训练损失函数,提升网络的特征学习能力。通过完成训练的网络,输出运动目标模糊图像复原结果。实验结果表明,该方法复原运动目标模糊图像的峰值信噪比高于30 dB,结构相似性高于0.9。 展开更多
关键词 改进残差网络 运动目标 多损失函数融合 模糊图像 编辑器-解码器网络 复原方法
下载PDF
反向传播神经网络的太平洋海域温跃层反演
13
作者 丁加豪 李倩倩 +1 位作者 毕德凯 刘胜君 《应用声学》 CSCD 北大核心 2024年第3期669-677,共9页
温跃层是反映海洋温度场的重要指标。针对太平洋中东部海域复杂多变的水文情况以及传统温跃层分析模式的局限性,该文基于BOA_Argo历史网格,通过BP神经网络,建立温度剖面的经验正交系数与海面遥感数据、少量深度处海水温度之间的非线性... 温跃层是反映海洋温度场的重要指标。针对太平洋中东部海域复杂多变的水文情况以及传统温跃层分析模式的局限性,该文基于BOA_Argo历史网格,通过BP神经网络,建立温度剖面的经验正交系数与海面遥感数据、少量深度处海水温度之间的非线性映射关系,实现海洋垂向温度剖面的实时反演,最后利用垂向梯度法获得海洋温跃层的相关参数。实验结果表明,相比于传统方法,该方法反演得到的跃层深度与测量值更加吻合,其中上层深度平均反演误差从10.3 m下降到5.7 m,下层深度平均反演误差从16.8 m下降到8.8 m。 展开更多
关键词 温跃层 BP神经网络 经验正交函数 垂向梯度法
下载PDF
基于改进深度动态模糊神经网络的信息综合分析算法 被引量:1
14
作者 章丹 施雯 +2 位作者 王远 邱曼曼 廖羽晗 《电子设计工程》 2024年第12期86-90,共5页
针对传统人力资源评价算法的主观性强,难以反映员工真实能力的问题,提出了一种结合深度动态模糊神经网络和粒子群优化的算法。该算法对传统模糊神经网络进行了改进,并使用动态结构来增强原模型训练能力,通过对隶属函数层的优化,使模型... 针对传统人力资源评价算法的主观性强,难以反映员工真实能力的问题,提出了一种结合深度动态模糊神经网络和粒子群优化的算法。该算法对传统模糊神经网络进行了改进,并使用动态结构来增强原模型训练能力,通过对隶属函数层的优化,使模型具备了处理广域数据的能力。为了提高算法的运行效率,还采用误差下降法对模型的规则权重进行排序并完成剪枝操作,同时利用粒子群算法实现对模型参数的优化。实验测试结果表明,所提算法的训练时间仅需7.8 s,性能与效率指标则均优于对比算法,且与人工评价法得到的指标大致相同,可以作为电力人才评价的辅助数据参考。 展开更多
关键词 模糊神经网络 动态结构 隶属函数 误差下降法 粒子群优化
下载PDF
基于CN-FRAM的公共交通设备设施系统运营安全韧性度量 被引量:1
15
作者 申玲 唐令怡 廖洁 《中国安全科学学报》 CAS CSCD 北大核心 2024年第3期45-54,共10页
设备设施故障是公共交通系统运营安全事故发生的主要原因,为更好地度量和增强系统的安全韧性,提出融合复杂网络(CN)与功能共振分析方法(FRAM)的CN-FRAM运营安全韧性度量模型,并将系统韧性定义为扰动下系统性能损失与性能基线之比。首先... 设备设施故障是公共交通系统运营安全事故发生的主要原因,为更好地度量和增强系统的安全韧性,提出融合复杂网络(CN)与功能共振分析方法(FRAM)的CN-FRAM运营安全韧性度量模型,并将系统韧性定义为扰动下系统性能损失与性能基线之比。首先,根据设备设施系统构成和节点功能,建立CN;其次,将FRAM模型嵌入到CN中,以扩展节点和连接,构建CN-FRAM模型;然后,基于CN-FRAM韧性度量模型分析系统组件之间功能变化的聚合,并在量化系统韧性时综合考虑网络整体效益和组件之间的耦合程度;最后,以南京市地铁信号系统为例,验证方法的可行性和有效性。结果表明:该模型可以量化系统破坏-恢复全过程的韧性,计算故障对系统的影响程度,并以韧性值最大化为目标,展现不同修复策略下的韧性表现,从而为确定最佳恢复顺序提供依据。对比现有方法,该方法所确定的最优恢复策略能显著减少系统因故障造成的整体性能损失,从而提高系统的韧性。 展开更多
关键词 复杂网络(CN)与功能共振分析方法(FRAM) 公共交通 设备设施系统 运营安全韧性 韧性度量
下载PDF
面向深度神经网络的电力芯片功能检测方法
16
作者 黄开天 匡晓云 杨祎巍 《电子设计工程》 2024年第7期16-19,25,共5页
电力芯片功能检测对于保证电力正常运行有重要意义,目前的方法检测准确率相对较低,导致检测时间过长。为了解决上述问题,面向深度神经网络提出了一种新的电力芯片功能检测方法,计算电力芯片功能指标参数,确定电力芯片功能检测的真实数据... 电力芯片功能检测对于保证电力正常运行有重要意义,目前的方法检测准确率相对较低,导致检测时间过长。为了解决上述问题,面向深度神经网络提出了一种新的电力芯片功能检测方法,计算电力芯片功能指标参数,确定电力芯片功能检测的真实数据,将独立神经元进行离散运算,并对其粒子量进行计算。根据得到的数据信息分析检测的隐藏神经元,计算回路的品质因数或谐振系数,检测传输功能,根据得到的实际处理量检测电力芯片的处理功能,通过建立待测量曲线和日负荷数据曲线,确定异常数据筛选功能。实验结果表明,所设计方法传输功能和处理功能检测准确率在98%以上,异常数据筛选功能检测准确率在99%以上,当检测数据量大于300 GB时,检测时间低于0.5s,所研究方法具有较好的性能。 展开更多
关键词 深度神经网络 电力芯片 功能检测 检测方法
下载PDF
基于神经网络滑模的欠驱动船舶路径跟踪与避障协同控制
17
作者 田宇 刘志全 高妍南 《广东海洋大学学报》 CAS CSCD 北大核心 2024年第5期144-152,共9页
【目的】针对存在模型不确定性和外界环境干扰的欠驱动船舶路径跟踪与避障问题,结合反演法与径向基函数(RBF)神经网络技术,提出一种神经网络滑模自适应控制律和改进的人工势场。【方法】首先根据误差方程设计辅助纵荡速度和艏摇角,然后... 【目的】针对存在模型不确定性和外界环境干扰的欠驱动船舶路径跟踪与避障问题,结合反演法与径向基函数(RBF)神经网络技术,提出一种神经网络滑模自适应控制律和改进的人工势场。【方法】首先根据误差方程设计辅助纵荡速度和艏摇角,然后分别对控制输入设计滑模面,并利用RBF神经网络逼近总未知项,设计控制律和自适应律。【结果与结论】Lyapunov稳定性分析证明闭环系统误差是一致最终有界的。对静态、动态障碍物分别改进人工势场,克服局部极小值问题以及未考虑船舶和障碍物的位置、相对速度关系问题。仿真对比结果表明,在海浪干扰下船舶路径跟踪误差收敛精度更高,且避障更安全。所提控制方法可改善路径跟踪与避障控制效果,验证了所提控制算法的有效性和鲁棒性。 展开更多
关键词 欠驱动船舶 路径跟踪 避障 反演法 径向基函数神经网络 滑模 人工势场法
下载PDF
基于改进蚁群算法的中压配电网络规划方法研究
18
作者 蒋雍天晟 林生津 《电工技术》 2024年第3期4-6,11,共4页
研究基于改进蚁群算法的中压配电网络规划方法,设计合理的中压配电网络规划方案,降低中压配电网络的费用。构建以负荷要求、潮流限制为约束条件,投资和运行费用最低为目标函数的中压配电网络规划数学模型。通过变换状态转移准则改进蚁... 研究基于改进蚁群算法的中压配电网络规划方法,设计合理的中压配电网络规划方案,降低中压配电网络的费用。构建以负荷要求、潮流限制为约束条件,投资和运行费用最低为目标函数的中压配电网络规划数学模型。通过变换状态转移准则改进蚁群算法,以数学模型为基础采用改进蚁群算法规划中压配电网络方案。实验表明该方法能使中压配电网络的负荷处于合理范围内,降低投资与运行费用。 展开更多
关键词 改进蚁群算法 中压配电网络 规划方法 目标函数 运行费用 负荷要求
下载PDF
基于神经网络的智能电网稳定性预测模型研究
19
作者 杨熠鑫 《微型电脑应用》 2024年第1期180-183,共4页
目前,在智能电网稳定性预测方面,机器学习发挥着越来越重要的作用。鉴于传统预测模型存在多种假设和预测不精确的缺点,提出了一种基于神经网络的智能电网稳定性预测模型,该模型以前馈神经网络为基础,采用考虑反应时间的阻尼最小二乘法... 目前,在智能电网稳定性预测方面,机器学习发挥着越来越重要的作用。鉴于传统预测模型存在多种假设和预测不精确的缺点,提出了一种基于神经网络的智能电网稳定性预测模型,该模型以前馈神经网络为基础,采用考虑反应时间的阻尼最小二乘法对数据进行训练,将消耗、生产的有功功率和弹性系数作为输入变量,对表征智能电网稳定性的特征根实部进行预测,模型在隐藏层的激活函数采用双极性S函数(tansig),输出层的激活函数采用线性传递函数(purelin)。模型采用均方误差(MSE)和决定系数(R-Square,R2)对预测模型精确性和有效性进行评估。预测结果表明,该预测模型在训练和测试阶段均具有足够准确的预测性能,在预测范围具有极低MSE值和极大R2值,对不同潮流下智能电网稳定性的预测表现出了极高的准确性。 展开更多
关键词 神经网络 智能电网 阻尼最小二乘法 激活函数 稳定性预测
下载PDF
配网馈线自动化终端防止自愈误合闸判别方法的研究
20
作者 刘烨 王冬雪 宋世杰 《今日自动化》 2024年第9期132-134,共3页
配网馈线自动化终端的自愈功能在提升供电可靠性方面起着重要作用,但自愈过程中存在的误合闸问题对系统的安全稳定运行构成了威胁。文章旨在研究防止自愈误合闸的判别方法。分析了配网馈线自动化终端自愈功能的原理及误合闸问题的成因... 配网馈线自动化终端的自愈功能在提升供电可靠性方面起着重要作用,但自愈过程中存在的误合闸问题对系统的安全稳定运行构成了威胁。文章旨在研究防止自愈误合闸的判别方法。分析了配网馈线自动化终端自愈功能的原理及误合闸问题的成因和影响。提出了基于电压和电流特征、信号处理技术以及智能算法的多种判别方法,并通过实验验证了其效果。实验结果表明,这些判别方法能够有效降低误合闸的发生率,提高配电网系统的稳定性和可靠性,该研究对配网系统的安全运行具有重要意义。 展开更多
关键词 配网馈线自动化终端 自愈功能 误合闸 判别方法
下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部