In the contemporary era, the proliferation of information technology has led to an unprecedented surge in data generation, with this data being dispersed across a multitude of mobile devices. Facing these situations a...In the contemporary era, the proliferation of information technology has led to an unprecedented surge in data generation, with this data being dispersed across a multitude of mobile devices. Facing these situations and the training of deep learning model that needs great computing power support, the distributed algorithm that can carry out multi-party joint modeling has attracted everyone’s attention. The distributed training mode relieves the huge pressure of centralized model on computer computing power and communication. However, most distributed algorithms currently work in a master-slave mode, often including a central server for coordination, which to some extent will cause communication pressure, data leakage, privacy violations and other issues. To solve these problems, a decentralized fully distributed algorithm based on deep random weight neural network is proposed. The algorithm decomposes the original objective function into several sub-problems under consistency constraints, combines the decentralized average consensus (DAC) and alternating direction method of multipliers (ADMM), and achieves the goal of joint modeling and training through local calculation and communication of each node. Finally, we compare the proposed decentralized algorithm with several centralized deep neural networks with random weights, and experimental results demonstrate the effectiveness of the proposed algorithm.展开更多
Feedforward multi layer neural networks have very strong mapping capability that is based on the non linearity of the activation function, however, the non linearity of the activation function can cause the multiple ...Feedforward multi layer neural networks have very strong mapping capability that is based on the non linearity of the activation function, however, the non linearity of the activation function can cause the multiple local minima on the learning error surfaces, which affect the learning rate and solving optimal weights. This paper proposes a learning method linearizing non linearity of the activation function and discusses its merits and demerits theoretically.展开更多
The neutral grounding mode of medium-voltage distribution network decides the reliability, overvoltage, relay protection and electrical safety. Therefore, a comprehensive consideration of the reliability, safety and e...The neutral grounding mode of medium-voltage distribution network decides the reliability, overvoltage, relay protection and electrical safety. Therefore, a comprehensive consideration of the reliability, safety and economy is particularly important for the decision of neutral grounding mode. This paper proposes a new decision method of neutral point grounding mode for mediumvoltage distribution network. The objective function is constructed for the decision according the life cycle cost. The reliability of the neutral point grounding mode is taken into account through treating the outage cost as an operating cost. The safety condition of the neutral point grounding mode is preserved as the constraint condition of decision models, so the decision method can generate the most economical and reliable scheme of neutral point grounding mode within a safe limit. The example is used to verify the feasibility and effectiveness of the decision method.展开更多
The effluent total phosphorus(ETP) is an important parameter to evaluate the performance of wastewater treatment process(WWTP). In this study, a novel method, using a data-derived soft-sensor method, is proposed to ob...The effluent total phosphorus(ETP) is an important parameter to evaluate the performance of wastewater treatment process(WWTP). In this study, a novel method, using a data-derived soft-sensor method, is proposed to obtain the reliable values of ETP online. First, a partial least square(PLS) method is introduced to select the related secondary variables of ETP based on the experimental data. Second, a radial basis function neural network(RBFNN) is developed to identify the relationship between the related secondary variables and ETP. This RBFNN easily optimizes the model parameters to improve the generalization ability of the soft-sensor. Finally, a monitoring system, based on the above PLS and RBFNN, named PLS-RBFNN-based soft-sensor system, is developed and tested in a real WWTP. Experimental results show that the proposed monitoring system can obtain the values of ETP online and own better predicting performance than some existing methods.展开更多
In this paper,the global robust exponential stability is considered for a class of neural networks with parametric uncer- tainties and time-varying delay.By using Lyapunov functional method,and by resorting to the new...In this paper,the global robust exponential stability is considered for a class of neural networks with parametric uncer- tainties and time-varying delay.By using Lyapunov functional method,and by resorting to the new technique for estimating the upper bound of the derivative of the Lyapunov functional,some less conservative exponential stability criteria are derived in terms of linear matrix inequalities (LMIs).Numerical examples are presented to show the effectiveness of the proposed method.展开更多
This paper proposes an optimization algorithm based on a multi-loop control system with a neural network controller,in which the objective function that is used is the control plant of each sub-control system.To obtai...This paper proposes an optimization algorithm based on a multi-loop control system with a neural network controller,in which the objective function that is used is the control plant of each sub-control system.To obtain the global optimization solution from a control plant that has many local minimum points,a transformation function is presented.On the one hand,this approach changes a complex objective function into a simple function under the condition of an unchanged globally optimal solution,to find the global optimization solution more easily by using a multi-loop control system.On the other hand,a special neural network(in which the node function can be simply positioned locally)that is composed of multiple transformation functions is used as the controller,which reduces the possibility of falling into local minimum points.At the same time,a filled function is presented as a control law;it can jump out of a local minimum point and move to another local minimum point that has a smaller value of the objective function.Finally,18 simulation examples are provided to show the effectiveness of the proposed method.展开更多
This work deals with the development of multi-cultural network-centric dynamic models under the influence of personal intra- and inter-members, as well as community. Each individual member of a society is influenced b...This work deals with the development of multi-cultural network-centric dynamic models under the influence of personal intra- and inter-members, as well as community. Each individual member of a society is influenced by her/his interactions with fellow members of the family, neighborhood, region and the universe. The behavior of such complex and highly interacting social networks is characterized by stochastic interconnected dynamical systems. The primary goal is on laying down an investigation of both qualitative and quantitative properties of this network dynamical system. In particular, we would like to determine the regions of conflicts and coexietence as well as to establish the cohesion and stability of emerging states. This is achieved by employing the method of system of differential inequalities and comparison theorems in the context of the energy function. The developed energy function method provides estimates for regions of conflict and cooperation. Moreover, the method also provides sufficient conditions for the community cohesion and stability in a systematic way.展开更多
It takes more time and is easier to fall into the local minimum value when using the traditional full-supervised learning algorithm to train RBFNN. Therefore, the paper proposes one algorithm to determine the RBFNN’s...It takes more time and is easier to fall into the local minimum value when using the traditional full-supervised learning algorithm to train RBFNN. Therefore, the paper proposes one algorithm to determine the RBFNN’s data center based on the improvement density method. First it uses the improved density method to select RBFNN’s data center, and calculates the expansion constant of each center, then only trains the network weight with the gradient descent method. To compare this method with full-supervised gradient descent method, the time not only has obvious reduction (including to choose data center’s time by density method), but also obtains better classification results when using the data set in UCI to carry on the test to the network.展开更多
A novel numerical method for eliminating the singular integral and boundary effect is processed. In the proposed method, the virtual boundaries corresponding to the numbers of the true boundary arguments are chosen to...A novel numerical method for eliminating the singular integral and boundary effect is processed. In the proposed method, the virtual boundaries corresponding to the numbers of the true boundary arguments are chosen to be as simple as possible. An indirect radial basis function network (IRBFN) constructed by functions resulting from the indeterminate integral is used to construct the approaching virtual source functions distributed along the virtual boundaries. By using the linear superposition method, the governing equations presented in the boundaries integral equations (BIE) can be established while the fundamental solutions to the problems are introduced. The singular value decomposition (SVD) method is used to solve the governing equations since an optimal solution in the least squares sense to the system equations is available. In addition, no elements are required, and the boundary conditions can be imposed easily because of the Kronecker delta function properties of the approaching functions. Three classical 2D elasticity problems have been examined to verify the performance of the method proposed. The results show that this method has faster convergence and higher accuracy than the conventional boundary type numerical methods.展开更多
文摘In the contemporary era, the proliferation of information technology has led to an unprecedented surge in data generation, with this data being dispersed across a multitude of mobile devices. Facing these situations and the training of deep learning model that needs great computing power support, the distributed algorithm that can carry out multi-party joint modeling has attracted everyone’s attention. The distributed training mode relieves the huge pressure of centralized model on computer computing power and communication. However, most distributed algorithms currently work in a master-slave mode, often including a central server for coordination, which to some extent will cause communication pressure, data leakage, privacy violations and other issues. To solve these problems, a decentralized fully distributed algorithm based on deep random weight neural network is proposed. The algorithm decomposes the original objective function into several sub-problems under consistency constraints, combines the decentralized average consensus (DAC) and alternating direction method of multipliers (ADMM), and achieves the goal of joint modeling and training through local calculation and communication of each node. Finally, we compare the proposed decentralized algorithm with several centralized deep neural networks with random weights, and experimental results demonstrate the effectiveness of the proposed algorithm.
文摘Feedforward multi layer neural networks have very strong mapping capability that is based on the non linearity of the activation function, however, the non linearity of the activation function can cause the multiple local minima on the learning error surfaces, which affect the learning rate and solving optimal weights. This paper proposes a learning method linearizing non linearity of the activation function and discusses its merits and demerits theoretically.
文摘The neutral grounding mode of medium-voltage distribution network decides the reliability, overvoltage, relay protection and electrical safety. Therefore, a comprehensive consideration of the reliability, safety and economy is particularly important for the decision of neutral grounding mode. This paper proposes a new decision method of neutral point grounding mode for mediumvoltage distribution network. The objective function is constructed for the decision according the life cycle cost. The reliability of the neutral point grounding mode is taken into account through treating the outage cost as an operating cost. The safety condition of the neutral point grounding mode is preserved as the constraint condition of decision models, so the decision method can generate the most economical and reliable scheme of neutral point grounding mode within a safe limit. The example is used to verify the feasibility and effectiveness of the decision method.
基金Supported by the National Science Foundation of China(61622301,61533002)Beijing Natural Science Foundation(4172005)Major National Science and Technology Project(2017ZX07104)
文摘The effluent total phosphorus(ETP) is an important parameter to evaluate the performance of wastewater treatment process(WWTP). In this study, a novel method, using a data-derived soft-sensor method, is proposed to obtain the reliable values of ETP online. First, a partial least square(PLS) method is introduced to select the related secondary variables of ETP based on the experimental data. Second, a radial basis function neural network(RBFNN) is developed to identify the relationship between the related secondary variables and ETP. This RBFNN easily optimizes the model parameters to improve the generalization ability of the soft-sensor. Finally, a monitoring system, based on the above PLS and RBFNN, named PLS-RBFNN-based soft-sensor system, is developed and tested in a real WWTP. Experimental results show that the proposed monitoring system can obtain the values of ETP online and own better predicting performance than some existing methods.
基金Natural Science Foundation of Henan Education Department (No.2007120005).
文摘In this paper,the global robust exponential stability is considered for a class of neural networks with parametric uncer- tainties and time-varying delay.By using Lyapunov functional method,and by resorting to the new technique for estimating the upper bound of the derivative of the Lyapunov functional,some less conservative exponential stability criteria are derived in terms of linear matrix inequalities (LMIs).Numerical examples are presented to show the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(61273190)
文摘This paper proposes an optimization algorithm based on a multi-loop control system with a neural network controller,in which the objective function that is used is the control plant of each sub-control system.To obtain the global optimization solution from a control plant that has many local minimum points,a transformation function is presented.On the one hand,this approach changes a complex objective function into a simple function under the condition of an unchanged globally optimal solution,to find the global optimization solution more easily by using a multi-loop control system.On the other hand,a special neural network(in which the node function can be simply positioned locally)that is composed of multiple transformation functions is used as the controller,which reduces the possibility of falling into local minimum points.At the same time,a filled function is presented as a control law;it can jump out of a local minimum point and move to another local minimum point that has a smaller value of the objective function.Finally,18 simulation examples are provided to show the effectiveness of the proposed method.
文摘This work deals with the development of multi-cultural network-centric dynamic models under the influence of personal intra- and inter-members, as well as community. Each individual member of a society is influenced by her/his interactions with fellow members of the family, neighborhood, region and the universe. The behavior of such complex and highly interacting social networks is characterized by stochastic interconnected dynamical systems. The primary goal is on laying down an investigation of both qualitative and quantitative properties of this network dynamical system. In particular, we would like to determine the regions of conflicts and coexietence as well as to establish the cohesion and stability of emerging states. This is achieved by employing the method of system of differential inequalities and comparison theorems in the context of the energy function. The developed energy function method provides estimates for regions of conflict and cooperation. Moreover, the method also provides sufficient conditions for the community cohesion and stability in a systematic way.
文摘It takes more time and is easier to fall into the local minimum value when using the traditional full-supervised learning algorithm to train RBFNN. Therefore, the paper proposes one algorithm to determine the RBFNN’s data center based on the improvement density method. First it uses the improved density method to select RBFNN’s data center, and calculates the expansion constant of each center, then only trains the network weight with the gradient descent method. To compare this method with full-supervised gradient descent method, the time not only has obvious reduction (including to choose data center’s time by density method), but also obtains better classification results when using the data set in UCI to carry on the test to the network.
文摘A novel numerical method for eliminating the singular integral and boundary effect is processed. In the proposed method, the virtual boundaries corresponding to the numbers of the true boundary arguments are chosen to be as simple as possible. An indirect radial basis function network (IRBFN) constructed by functions resulting from the indeterminate integral is used to construct the approaching virtual source functions distributed along the virtual boundaries. By using the linear superposition method, the governing equations presented in the boundaries integral equations (BIE) can be established while the fundamental solutions to the problems are introduced. The singular value decomposition (SVD) method is used to solve the governing equations since an optimal solution in the least squares sense to the system equations is available. In addition, no elements are required, and the boundary conditions can be imposed easily because of the Kronecker delta function properties of the approaching functions. Three classical 2D elasticity problems have been examined to verify the performance of the method proposed. The results show that this method has faster convergence and higher accuracy than the conventional boundary type numerical methods.