期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
評Demonic Warfare:Daoism,Territorial Networks,and the History of a Ming Novel
1
作者 許蔚 《古典文献研究》 CSSCI 2018年第1期280-289,共10页
宗教文學是一個迷人的領域,道教文學尤其如此。什麽是道教文學?長期以來,學界并没有給出或者得出一個比較明確的結論。文學可以選擇任何題材,道教也可以採取任何形式。問題是,以道教爲題材很特别嗎?與一般世俗題材的文學,與諸如佛教、... 宗教文學是一個迷人的領域,道教文學尤其如此。什麽是道教文學?長期以來,學界并没有給出或者得出一個比較明確的結論。文學可以選擇任何題材,道教也可以採取任何形式。問題是,以道教爲題材很特别嗎?與一般世俗題材的文學,與諸如佛教、耶教等其他宗教題材的文學有什麽不同?同樣的,以文學爲形式,其目的、功能、作用、影響等很特殊嗎?與修煉、儀式。 展开更多
关键词 封神榜 道教化 Demonic Warfare:Daoism Territorial networks and the history of a Ming Novel
原文传递
Deep Learning Applied to Computational Mechanics:A Comprehensive Review,State of the Art,and the Classics 被引量:1
2
作者 Loc Vu-Quoc Alexander Humer 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第11期1069-1343,共275页
Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularl... Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularly deep learning(DL),applied and relevant to computational mechanics(solid,fluids,finite-element technology)are reviewed in detail.Both hybrid and pure machine learning(ML)methods are discussed.Hybrid methods combine traditional PDE discretizations with ML methods either(1)to help model complex nonlinear constitutive relations,(2)to nonlinearly reduce the model order for efficient simulation(turbulence),or(3)to accelerate the simulation by predicting certain components in the traditional integration methods.Here,methods(1)and(2)relied on Long-Short-Term Memory(LSTM)architecture,with method(3)relying on convolutional neural networks.Pure ML methods to solve(nonlinear)PDEs are represented by Physics-Informed Neural network(PINN)methods,which could be combined with attention mechanism to address discontinuous solutions.Both LSTM and attention architectures,together with modern and generalized classic optimizers to include stochasticity for DL networks,are extensively reviewed.Kernel machines,including Gaussian processes,are provided to sufficient depth for more advanced works such as shallow networks with infinite width.Not only addressing experts,readers are assumed familiar with computational mechanics,but not with DL,whose concepts and applications are built up from the basics,aiming at bringing first-time learners quickly to the forefront of research.History and limitations of AI are recounted and discussed,with particular attention at pointing out misstatements or misconceptions of the classics,even in well-known references.Positioning and pointing control of a large-deformable beam is given as an example. 展开更多
关键词 Deep learning breakthroughs network architectures backpropagation stochastic optimization methods from classic to modern recurrent neural networks long short-term memory gated recurrent unit attention transformer kernel machines Gaussian processes libraries Physics-Informed Neural networks state-of-the-art history limitations challenges Applications to computational mechanics Finite-element matrix integration improved Gauss quadrature Multiscale geomechanics fluid-filled porous media Fluid mechanics turbulence proper orthogonal decomposition Nonlinear-manifold model-order reduction autoencoder hyper-reduction using gappy data control of large deformable beam
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部