Wireless sensor networks (WSNs) have many potential applications [1,2] and unique challenges. They usually consist of hundreds or thousands of small sensor nodes such as MICA2, which operate autonomously;conditions su...Wireless sensor networks (WSNs) have many potential applications [1,2] and unique challenges. They usually consist of hundreds or thousands of small sensor nodes such as MICA2, which operate autonomously;conditions such as cost, invisible deployment and many application domains, lead to small size and resource limited sensors [3]. WSNs are susceptible to many types of link layer attacks [1] and most of traditional network security techniques are unusable on WSNs [3];This is due to wireless and shared nature of communication channel, untrusted transmissions, deployment in open environments, unattended nature and limited resources [1]. Therefore security is a vital requirement for these networks;but we have to design a proper security mechanism that attends to WSN’s constraints and requirements. In this paper, we focus on security of WSNs, divide it (the WSNs security) into four categories and will consider them, include: an overview of WSNs, security in WSNs, the threat model on WSNs, a wide variety of WSNs’ link layer attacks and a comparison of them. This work enables us to identify the purpose and capabilities of the attackers;furthermore, the goal and effects of the link layer attacks on WSNs are introduced. Also, this paper discusses known approaches of security detection and defensive mechanisms against the link layer attacks;this would enable IT security managers to manage the link layer attacks of WSNs more effectively.展开更多
Mobile Ad hoc NETworks (MANETs), characterized by the free move of mobile nodes are more vulnerable to the trivial Denial-of-Service (DoS) attacks such as replay attacks. A replay attacker performs this attack at anyt...Mobile Ad hoc NETworks (MANETs), characterized by the free move of mobile nodes are more vulnerable to the trivial Denial-of-Service (DoS) attacks such as replay attacks. A replay attacker performs this attack at anytime and anywhere in the network by interception and retransmission of the valid signed messages. Consequently, the MANET performance is severally degraded by the overhead produced by the redundant valid messages. In this paper, we propose an enhancement of timestamp discrepancy used to validate a signed message and consequently limiting the impact of a replay attack. Our proposed timestamp concept estimates approximately the time where the message is received and validated by the received node. This estimation is based on the existing parameters defined at the 802.11 MAC layer.展开更多
Previous research on security of network coding focused on the protection of data dissemination procedures and the detection of malicious activities such as pollution attacks. The capabilities of network coding to det...Previous research on security of network coding focused on the protection of data dissemination procedures and the detection of malicious activities such as pollution attacks. The capabilities of network coding to detect other attacks have not been fully explored. In this paper, we propose a new mechanism based on physical layer network coding to detect wormhole attacks. When two signal sequences collide at the receiver, the starting point of the collision is determined by the distances between the receiver and the senders. Therefore, by comparing the starting points of the collisions at two receivers, we can estimate the distance between them and detect fake neighbor connections via wormholes. While the basic idea is clear, we have proposed several schemes at both physical and network layers to transform the idea into a practical approach. Simulations using BPSK modulation at the physical layer show that the wireless nodes can effectively detect fake neighbor connections without the adoption of special hardware or time synchronization.展开更多
文摘Wireless sensor networks (WSNs) have many potential applications [1,2] and unique challenges. They usually consist of hundreds or thousands of small sensor nodes such as MICA2, which operate autonomously;conditions such as cost, invisible deployment and many application domains, lead to small size and resource limited sensors [3]. WSNs are susceptible to many types of link layer attacks [1] and most of traditional network security techniques are unusable on WSNs [3];This is due to wireless and shared nature of communication channel, untrusted transmissions, deployment in open environments, unattended nature and limited resources [1]. Therefore security is a vital requirement for these networks;but we have to design a proper security mechanism that attends to WSN’s constraints and requirements. In this paper, we focus on security of WSNs, divide it (the WSNs security) into four categories and will consider them, include: an overview of WSNs, security in WSNs, the threat model on WSNs, a wide variety of WSNs’ link layer attacks and a comparison of them. This work enables us to identify the purpose and capabilities of the attackers;furthermore, the goal and effects of the link layer attacks on WSNs are introduced. Also, this paper discusses known approaches of security detection and defensive mechanisms against the link layer attacks;this would enable IT security managers to manage the link layer attacks of WSNs more effectively.
文摘Mobile Ad hoc NETworks (MANETs), characterized by the free move of mobile nodes are more vulnerable to the trivial Denial-of-Service (DoS) attacks such as replay attacks. A replay attacker performs this attack at anytime and anywhere in the network by interception and retransmission of the valid signed messages. Consequently, the MANET performance is severally degraded by the overhead produced by the redundant valid messages. In this paper, we propose an enhancement of timestamp discrepancy used to validate a signed message and consequently limiting the impact of a replay attack. Our proposed timestamp concept estimates approximately the time where the message is received and validated by the received node. This estimation is based on the existing parameters defined at the 802.11 MAC layer.
基金Supported in part by the NSF CNS Award (No. 1143602)
文摘Previous research on security of network coding focused on the protection of data dissemination procedures and the detection of malicious activities such as pollution attacks. The capabilities of network coding to detect other attacks have not been fully explored. In this paper, we propose a new mechanism based on physical layer network coding to detect wormhole attacks. When two signal sequences collide at the receiver, the starting point of the collision is determined by the distances between the receiver and the senders. Therefore, by comparing the starting points of the collisions at two receivers, we can estimate the distance between them and detect fake neighbor connections via wormholes. While the basic idea is clear, we have proposed several schemes at both physical and network layers to transform the idea into a practical approach. Simulations using BPSK modulation at the physical layer show that the wireless nodes can effectively detect fake neighbor connections without the adoption of special hardware or time synchronization.