期刊文献+
共找到55篇文章
< 1 2 3 >
每页显示 20 50 100
Bayesian network learning algorithm based on unconstrained optimization and ant colony optimization 被引量:3
1
作者 Chunfeng Wang Sanyang Liu Mingmin Zhu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第5期784-790,共7页
Structure learning of Bayesian networks is a wellresearched but computationally hard task.For learning Bayesian networks,this paper proposes an improved algorithm based on unconstrained optimization and ant colony opt... Structure learning of Bayesian networks is a wellresearched but computationally hard task.For learning Bayesian networks,this paper proposes an improved algorithm based on unconstrained optimization and ant colony optimization(U-ACO-B) to solve the drawbacks of the ant colony optimization(ACO-B).In this algorithm,firstly,an unconstrained optimization problem is solved to obtain an undirected skeleton,and then the ACO algorithm is used to orientate the edges,thus returning the final structure.In the experimental part of the paper,we compare the performance of the proposed algorithm with ACO-B algorithm.The experimental results show that our method is effective and greatly enhance convergence speed than ACO-B algorithm. 展开更多
关键词 Bayesian network structure learning ant colony optimization unconstrained optimization
下载PDF
LC-NPLA: Label and Community Information-Based Network Presentation Learning Algorithm
2
作者 Shihu Liu Chunsheng Yang Yingjie Liu 《Intelligent Automation & Soft Computing》 2023年第12期203-223,共21页
Many network presentation learning algorithms(NPLA)have originated from the process of the random walk between nodes in recent years.Despite these algorithms can obtain great embedding results,there may be also some l... Many network presentation learning algorithms(NPLA)have originated from the process of the random walk between nodes in recent years.Despite these algorithms can obtain great embedding results,there may be also some limitations.For instance,only the structural information of nodes is considered when these kinds of algorithms are constructed.Aiming at this issue,a label and community information-based network presentation learning algorithm(LC-NPLA)is proposed in this paper.First of all,by using the community information and the label information of nodes,the first-order neighbors of nodes are reconstructed.In the next,the random walk strategy is improved by integrating the degree information and label information of nodes.Then,the node sequence obtained from random walk sampling is transformed into the node representation vector by the Skip-Gram model.At last,the experimental results on ten real-world networks demonstrate that the proposed algorithm has great advantages in the label classification,network reconstruction and link prediction tasks,compared with three benchmark algorithms. 展开更多
关键词 Label information community information network representation learning algorithm random walk
下载PDF
Weighted Forwarding in Graph Convolution Networks for Recommendation Information Systems
3
作者 Sang-min Lee Namgi Kim 《Computers, Materials & Continua》 SCIE EI 2024年第2期1897-1914,共18页
Recommendation Information Systems(RIS)are pivotal in helping users in swiftly locating desired content from the vast amount of information available on the Internet.Graph Convolution Network(GCN)algorithms have been ... Recommendation Information Systems(RIS)are pivotal in helping users in swiftly locating desired content from the vast amount of information available on the Internet.Graph Convolution Network(GCN)algorithms have been employed to implement the RIS efficiently.However,the GCN algorithm faces limitations in terms of performance enhancement owing to the due to the embedding value-vanishing problem that occurs during the learning process.To address this issue,we propose a Weighted Forwarding method using the GCN(WF-GCN)algorithm.The proposed method involves multiplying the embedding results with different weights for each hop layer during graph learning.By applying the WF-GCN algorithm,which adjusts weights for each hop layer before forwarding to the next,nodes with many neighbors achieve higher embedding values.This approach facilitates the learning of more hop layers within the GCN framework.The efficacy of the WF-GCN was demonstrated through its application to various datasets.In the MovieLens dataset,the implementation of WF-GCN in LightGCN resulted in significant performance improvements,with recall and NDCG increasing by up to+163.64%and+132.04%,respectively.Similarly,in the Last.FM dataset,LightGCN using WF-GCN enhanced with WF-GCN showed substantial improvements,with the recall and NDCG metrics rising by up to+174.40%and+169.95%,respectively.Furthermore,the application of WF-GCN to Self-supervised Graph Learning(SGL)and Simple Graph Contrastive Learning(SimGCL)also demonstrated notable enhancements in both recall and NDCG across these datasets. 展开更多
关键词 Deep learning graph neural network graph convolution network graph convolution network model learning method recommender information systems
下载PDF
Expert Recommendation in Community Question Answering via Heterogeneous Content Network Embedding
4
作者 Hong Li Jianjun Li +2 位作者 Guohui Li Rong Gao Lingyu Yan 《Computers, Materials & Continua》 SCIE EI 2023年第4期1687-1709,共23页
ExpertRecommendation(ER)aims to identify domain experts with high expertise and willingness to provide answers to questions in Community Question Answering(CQA)web services.How to model questions and users in the hete... ExpertRecommendation(ER)aims to identify domain experts with high expertise and willingness to provide answers to questions in Community Question Answering(CQA)web services.How to model questions and users in the heterogeneous content network is critical to this task.Most traditional methods focus on modeling questions and users based on the textual content left in the community while ignoring the structural properties of heterogeneous CQA networks and always suffering from textual data sparsity issues.Recent approaches take advantage of structural proximities between nodes and attempt to fuse the textual content of nodes for modeling.However,they often fail to distinguish the nodes’personalized preferences and only consider the textual content of a part of the nodes in network embedding learning,while ignoring the semantic relevance of nodes.In this paper,we propose a novel framework that jointly considers the structural proximity relations and textual semantic relevance to model users and questions more comprehensively.Specifically,we learn topology-based embeddings through a hierarchical attentive network learning strategy,in which the proximity information and the personalized preference of nodes are encoded and preserved.Meanwhile,we utilize the node’s textual content and the text correlation between adjacent nodes to build the content-based embedding through a meta-context-aware skip-gram model.In addition,the user’s relative answer quality is incorporated to promote the ranking performance.Experimental results show that our proposed framework consistently and significantly outperforms the state-of-the-art baselines on three real-world datasets by taking the deep semantic understanding and structural feature learning together.The performance of the proposed work is analyzed in terms of MRR,P@K,and MAP and is proven to be more advanced than the existing methodologies. 展开更多
关键词 Heterogeneous network learning expert recommendation semantic representation community question answering
下载PDF
Deep Imitation Learning for Autonomous Vehicles Based on Convolutional Neural Networks 被引量:6
5
作者 Parham M.Kebria Abbas Khosravi +1 位作者 Syed Moshfeq Salaken Saeid Nahavandi 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2020年第1期82-95,共14页
Providing autonomous systems with an effective quantity and quality of information from a desired task is challenging. In particular, autonomous vehicles, must have a reliable vision of their workspace to robustly acc... Providing autonomous systems with an effective quantity and quality of information from a desired task is challenging. In particular, autonomous vehicles, must have a reliable vision of their workspace to robustly accomplish driving functions. Speaking of machine vision, deep learning techniques, and specifically convolutional neural networks, have been proven to be the state of the art technology in the field. As these networks typically involve millions of parameters and elements, designing an optimal architecture for deep learning structures is a difficult task which is globally under investigation by researchers. This study experimentally evaluates the impact of three major architectural properties of convolutional networks, including the number of layers, filters, and filter size on their performance. In this study, several models with different properties are developed,equally trained, and then applied to an autonomous car in a realistic simulation environment. A new ensemble approach is also proposed to calculate and update weights for the models regarding their mean squared error values. Based on design properties,performance results are reported and compared for further investigations. Surprisingly, the number of filters itself does not largely affect the performance efficiency. As a result, proper allocation of filters with different kernel sizes through the layers introduces a considerable improvement in the performance.Achievements of this study will provide the researchers with a clear clue and direction in designing optimal network architectures for deep learning purposes. 展开更多
关键词 Index Terms—Autonomous vehicles convolutional neural networks deep learning imitation learning
下载PDF
DeepIoT.IDS:Hybrid Deep Learning for Enhancing IoT Network Intrusion Detection 被引量:1
6
作者 Ziadoon K.Maseer Robiah Yusof +3 位作者 Salama A.Mostafa Nazrulazhar Bahaman Omar Musa Bander Ali Saleh Al-rimy 《Computers, Materials & Continua》 SCIE EI 2021年第12期3945-3966,共22页
With an increasing number of services connected to the internet,including cloud computing and Internet of Things(IoT)systems,the prevention of cyberattacks has become more challenging due to the high dimensionality of... With an increasing number of services connected to the internet,including cloud computing and Internet of Things(IoT)systems,the prevention of cyberattacks has become more challenging due to the high dimensionality of the network traffic data and access points.Recently,researchers have suggested deep learning(DL)algorithms to define intrusion features through training empirical data and learning anomaly patterns of attacks.However,due to the high dynamics and imbalanced nature of the data,the existing DL classifiers are not completely effective at distinguishing between abnormal and normal behavior line connections for modern networks.Therefore,it is important to design a self-adaptive model for an intrusion detection system(IDS)to improve the detection of attacks.Consequently,in this paper,a novel hybrid weighted deep belief network(HW-DBN)algorithm is proposed for building an efficient and reliable IDS(DeepIoT.IDS)model to detect existing and novel cyberattacks.The HW-DBN algorithm integrates an improved Gaussian–Bernoulli restricted Boltzmann machine(Deep GB-RBM)feature learning operator with a weighted deep neural networks(WDNN)classifier.The CICIDS2017 dataset is selected to evaluate the DeepIoT.IDS model as it contains multiple types of attacks,complex data patterns,noise values,and imbalanced classes.We have compared the performance of the DeepIoT.IDS model with three recent models.The results show the DeepIoT.IDS model outperforms the three other models by achieving a higher detection accuracy of 99.38%and 99.99%for web attack and bot attack scenarios,respectively.Furthermore,it can detect the occurrence of low-frequency attacks that are undetectable by other models. 展开更多
关键词 Cyberattacks internet of things intrusion detection system deep learning neural network supervised and unsupervised deep learning
下载PDF
Learning Bayesian network structure with immune algorithm 被引量:3
7
作者 Zhiqiang Cai Shubin Si +1 位作者 Shudong Sun Hongyan Dui 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第2期282-291,共10页
Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa- per proposes an immune algorith... Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa- per proposes an immune algorithm based method (BN-IA) for the learning of the BN structure with the idea of vaccination. Further- more, the methods on how to extract the effective vaccines from local optimal structure and root nodes are also described in details. Finally, the simulation studies are implemented with the helicopter convertor BN model and the car start BN model. The comparison results show that the proposed vaccines and the BN-IA can learn the BN structure effectively and efficiently. 展开更多
关键词 structure learning Bayesian network immune algorithm local optimal structure vaccination
下载PDF
Prediction of Flash Flood Susceptibility of Hilly Terrain Using Deep Neural Network:A Case Study of Vietnam 被引量:2
8
作者 Huong Thi Thanh Ngo Nguyen Duc Dam +7 位作者 Quynh-Anh Thi Bui Nadhir Al-Ansari Romulus Costache Hang Ha Quynh Duy Bui Sy Hung Mai Indra Prakash Binh Thai Pham 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第6期2219-2241,共23页
Flash floods are one of the most dangerous natural disasters,especially in hilly terrain,causing loss of life,property,and infrastructures and sudden disruption of traffic.These types of floods are mostly associated w... Flash floods are one of the most dangerous natural disasters,especially in hilly terrain,causing loss of life,property,and infrastructures and sudden disruption of traffic.These types of floods are mostly associated with landslides and erosion of roads within a short time.Most of Vietnamis hilly and mountainous;thus,the problem due to flash flood is severe and requires systematic studies to correctly identify flood susceptible areas for proper landuse planning and traffic management.In this study,three Machine Learning(ML)methods namely Deep Learning Neural Network(DL),Correlation-based FeatureWeighted Naive Bayes(CFWNB),and Adaboost(AB-CFWNB)were used for the development of flash flood susceptibility maps for hilly road section(115 km length)of National Highway(NH)-6 inHoa Binh province,Vietnam.In the proposedmodels,88 past flash flood events were used together with 14 flash floods affecting topographical and geo-environmental factors.The performance of themodels was evaluated using standard statisticalmeasures including Receiver Operating Characteristic(ROC)Curve,Area Under Curve(AUC)and Root Mean Square Error(RMSE).The results revealed that all the models performed well(AUC>0.80)in predicting flash flood susceptibility zones,but the performance of the DL model is the best(AUC:0.972,RMSE:0.352).Therefore,the DL model can be applied to develop an accurate flash flood susceptibility map of hilly terrain which can be used for proper planning and designing of the highways and other infrastructure facilities besides landuse management of the area. 展开更多
关键词 Flash flood deep learning neural network(DL) machine learning(ML) receiver operating characteristic curve(ROC) VIETNAM
下载PDF
Semantic Pneumonia Segmentation and Classification for Covid-19 Using Deep Learning Network
9
作者 M.M.Lotfy Hazem M.El-Bakry +4 位作者 M.M.Elgayar Shaker El-Sappagh G.Abdallah M.I A.A.Soliman Kyung Sup Kwak 《Computers, Materials & Continua》 SCIE EI 2022年第10期1141-1158,共18页
Early detection of the Covid-19 disease is essential due to its higher rate of infection affecting tens of millions of people,and its high number of deaths also by 7%.For that purpose,a proposed model of several stage... Early detection of the Covid-19 disease is essential due to its higher rate of infection affecting tens of millions of people,and its high number of deaths also by 7%.For that purpose,a proposed model of several stages was developed.The first stage is optimizing the images using dynamic adaptive histogram equalization,performing a semantic segmentation using DeepLabv3Plus,then augmenting the data by flipping it horizontally,rotating it,then flipping it vertically.The second stage builds a custom convolutional neural network model using several pre-trained ImageNet.Finally,the model compares the pre-trained data to the new output,while repeatedly trimming the best-performing models to reduce complexity and improve memory efficiency.Several experiments were done using different techniques and parameters.Accordingly,the proposed model achieved an average accuracy of 99.6%and an area under the curve of 0.996 in the Covid-19 detection.This paper will discuss how to train a customized intelligent convolutional neural network using various parameters on a set of chest X-rays with an accuracy of 99.6%. 展开更多
关键词 SARS-COV2 COVID-19 PNEUMONIA deep learning network semantic segmentation smart classification
下载PDF
A Fast Calculation of Metric Scores for Learning Bayesian Network
10
作者 Qiang Lv Xiao-Yan Xia Pei-De Qian 《International Journal of Automation and computing》 EI 2012年第1期37-44,共8页
Frequent counting is a very so often required operation in machine learning algorithms. A typical machine learning task, learning the structure of Bayesian network (BN) based on metric scoring, is introduced as an e... Frequent counting is a very so often required operation in machine learning algorithms. A typical machine learning task, learning the structure of Bayesian network (BN) based on metric scoring, is introduced as an example that heavily relies on frequent counting. A fast calculation method for frequent counting enhanced with two cache layers is then presented for learning BN. The main contribution of our approach is to eliminate comparison operations for frequent counting by introducing a multi-radix number system calculation. Both mathematical analysis and empirical comparison between our method and state-of-the-art solution are conducted. The results show that our method is dominantly superior to state-of-the-art solution in solving the problem of learning BN. 展开更多
关键词 Frequent counting radix-based calculation ADtree learning Bayesian network metric score
下载PDF
A Self-Learning Data-Driven Development of Failure Criteria of Unknown Anisotropic Ductile Materials with Deep Learning Neural Network
11
作者 Kyungsuk Jang Gun Jin Yun 《Computers, Materials & Continua》 SCIE EI 2021年第2期1091-1120,共30页
This paper first proposes a new self-learning data-driven methodology that can develop the failure criteria of unknown anisotropic ductile materials from the minimal number of experimental tests.Establishing failure c... This paper first proposes a new self-learning data-driven methodology that can develop the failure criteria of unknown anisotropic ductile materials from the minimal number of experimental tests.Establishing failure criteria of anisotropic ductile materials requires time-consuming tests and manual data evaluation.The proposed method can overcome such practical challenges.The methodology is formalized by combining four ideas:1)The deep learning neural network(DLNN)-based material constitutive model,2)Self-learning inverse finite element(SELIFE)simulation,3)Algorithmic identification of failure points from the selflearned stress-strain curves and 4)Derivation of the failure criteria through symbolic regression of the genetic programming.Stress update and the algorithmic tangent operator were formulated in terms of DLNN parameters for nonlinear finite element analysis.Then,the SELIFE simulation algorithm gradually makes the DLNN model learn highly complex multi-axial stress and strain relationships,being guided by the experimental boundary measurements.Following the failure point identification,a self-learning data-driven failure criteria are eventually developed with the help of a reliable symbolic regression algorithm.The methodology and the self-learning data-driven failure criteria were verified by comparing with a reference failure criteria and simulating with different materials orientations,respectively. 展开更多
关键词 Data-driven modeling deep learning neural networks genetic programming anisotropic failure criterion
下载PDF
Deep Learning Network for Energy Storage Scheduling in Power Market Environment Short-Term Load Forecasting Model
12
作者 Yunlei Zhang RuifengCao +3 位作者 Danhuang Dong Sha Peng RuoyunDu Xiaomin Xu 《Energy Engineering》 EI 2022年第5期1829-1841,共13页
In the electricity market,fluctuations in real-time prices are unstable,and changes in short-term load are determined by many factors.By studying the timing of charging and discharging,as well as the economic benefits... In the electricity market,fluctuations in real-time prices are unstable,and changes in short-term load are determined by many factors.By studying the timing of charging and discharging,as well as the economic benefits of energy storage in the process of participating in the power market,this paper takes energy storage scheduling as merely one factor affecting short-term power load,which affects short-term load time series along with time-of-use price,holidays,and temperature.A deep learning network is used to predict the short-term load,a convolutional neural network(CNN)is used to extract the features,and a long short-term memory(LSTM)network is used to learn the temporal characteristics of the load value,which can effectively improve prediction accuracy.Taking the load data of a certain region as an example,the CNN-LSTM prediction model is compared with the single LSTM prediction model.The experimental results show that the CNN-LSTM deep learning network with the participation of energy storage in dispatching can have high prediction accuracy for short-term power load forecasting. 展开更多
关键词 Energy storage scheduling short-term load forecasting deep learning network convolutional neural network CNN long and short term memory network LTSM
下载PDF
Memetic algorithms-based neural network learning for basic oxygen furnace endpoint prediction
13
作者 Peng CHEN Yong-zai LU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2010年第11期841-848,共8页
Based on the critical position of the endpoint quality prediction for basic oxygen furnaces (BOFs) in steelmaking, and the latest results in computational intelligence (CI), this paper deals with the development of a ... Based on the critical position of the endpoint quality prediction for basic oxygen furnaces (BOFs) in steelmaking, and the latest results in computational intelligence (CI), this paper deals with the development of a novel memetic algorithm (MA) for neural network (NN) learning. Included in this is the integration of extremal optimization (EO) and Levenberg-Marquardt (LM) gradient search, and its application in BOF endpoint quality prediction. The fundamental analysis reveals that the proposed EO-LM algorithm may provide superior performance in generalization, computation efficiency, and avoid local minima, com-pared to traditional NN learning methods. Experimental results with production-scale BOF data show that the proposed method can effectively improve the NN model for BOF endpoint quality prediction. 展开更多
关键词 Memetic algorithm (MA) Neural network (NN) learning Back propagation (BP) Extremal optimization (EO) Levenberg-Marquardt (LM) gradient search Basic oxygen furnace (BOF)
原文传递
Robust signal recognition algorithm based on machine learning in heterogeneous networks
14
作者 Xiaokai Liu Rong Li +1 位作者 Chenglin Zhao Pengbiao Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第2期333-342,共10页
There are various heterogeneous networks for terminals to deliver a better quality of service. Signal system recognition and classification contribute a lot to the process. However, in low signal to noise ratio(SNR)... There are various heterogeneous networks for terminals to deliver a better quality of service. Signal system recognition and classification contribute a lot to the process. However, in low signal to noise ratio(SNR) circumstances or under time-varying multipath channels, the majority of the existing algorithms for signal recognition are already facing limitations. In this series, we present a robust signal recognition method based upon the original and latest updated version of the extreme learning machine(ELM) to help users to switch between networks. The ELM utilizes signal characteristics to distinguish systems. The superiority of this algorithm lies in the random choices of hidden nodes and in the fact that it determines the output weights analytically, which result in lower complexity. Theoretically, the algorithm tends to offer a good generalization performance at an extremely fast speed of learning. Moreover, we implement the GSM/WCDMA/LTE models in the Matlab environment by using the Simulink tools. The simulations reveal that the signals can be recognized successfully to achieve a 95% accuracy in a low SNR(0 dB) environment in the time-varying multipath Rayleigh fading channel. 展开更多
关键词 heterogeneous networks automatic signal classification extreme learning machine(ELM) features-extracted Rayleigh fading channel
下载PDF
Generative Adversarial Networks for Secure Data Transmission in Wireless Network
15
作者 E.Jayabalan R.Pugazendi 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期3757-3784,共28页
In this paper,a communication model in cognitive radios is developed and uses machine learning to learn the dynamics of jamming attacks in cognitive radios.It is designed further to make their transmission decision th... In this paper,a communication model in cognitive radios is developed and uses machine learning to learn the dynamics of jamming attacks in cognitive radios.It is designed further to make their transmission decision that automati-cally adapts to the transmission dynamics to mitigate the launched jamming attacks.The generative adversarial learning neural network(GALNN)or genera-tive dynamic neural network(GDNN)automatically learns with the synthesized training data(training)with a generator and discriminator type neural networks that encompass minimax game theory.The elimination of the jamming attack is carried out with the assistance of the defense strategies and with an increased detection rate in the generative adversarial network(GAN).The GDNN with game theory is designed to validate the channel condition with the cross entropy loss function and back-propagation algorithm,which improves the communica-tion reliability in the network.The simulation is conducted in NS2.34 tool against several performance metrics to reduce the misdetection rate and false alarm rates.The results show that the GDNN obtains an increased rate of successful transmis-sion by taking optimal actions to act as a defense mechanism to mislead the jam-mer,where the jammer makes high misclassification errors on transmission dynamics. 展开更多
关键词 Generative adversarial learning neural network JAMMER Minimax game theory ATTACKS
下载PDF
Hybrid Deep Learning-Improved BAT Optimization Algorithm for Soil Classification Using Hyperspectral Features
16
作者 S.Prasanna Bharathi S.Srinivasan +1 位作者 G.Chamundeeswari B.Ramesh 《Computer Systems Science & Engineering》 SCIE EI 2023年第4期579-594,共16页
Now a days,Remote Sensing(RS)techniques are used for earth observation and for detection of soil types with high accuracy and better reliability.This technique provides perspective view of spatial resolution and aids ... Now a days,Remote Sensing(RS)techniques are used for earth observation and for detection of soil types with high accuracy and better reliability.This technique provides perspective view of spatial resolution and aids in instantaneous measurement of soil’s minerals and its characteristics.There are a few challenges that is present in soil classification using image enhancement such as,locating and plotting soil boundaries,slopes,hazardous areas,drainage condition,land use,vegetation etc.There are some traditional approaches which involves few drawbacks such as,manual involvement which results in inaccuracy due to human interference,time consuming,inconsistent prediction etc.To overcome these draw backs and to improve the predictive analysis of soil characteristics,we propose a Hybrid Deep Learning improved BAT optimization algorithm(HDIB)for soil classification using remote sensing hyperspectral features.In HDIB,we propose a spontaneous BAT optimization algorithm for feature extraction of both spectral-spatial features by choosing pure pixels from the Hyper Spectral(HS)image.Spectral-spatial vector as training illustrations is attained by merging spatial and spectral vector by means of priority stacking methodology.Then,a recurring Deep Learning(DL)Neural Network(NN)is used for classifying the HS images,considering the datasets of Pavia University,Salinas and Tamil Nadu Hill Scene,which in turn improves the reliability of classification.Finally,the performance of the proposed HDIB based soil classifier is compared and analyzed with existing methodologies like Single Layer Perceptron(SLP),Convolutional Neural Networks(CNN)and Deep Metric Learning(DML)and it shows an improved classification accuracy of 99.87%,98.34%and 99.9%for Tamil Nadu Hills dataset,Pavia University and Salinas scene datasets respectively. 展开更多
关键词 HDIB bat optimization algorithm recurrent deep learning neural network convolutional neural network single layer perceptron hyperspectral images deep metric learning
下载PDF
Deep Learning Applied to Computational Mechanics:A Comprehensive Review,State of the Art,and the Classics
17
作者 Loc Vu-Quoc Alexander Humer 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第11期1069-1343,共275页
Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularl... Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularly deep learning(DL),applied and relevant to computational mechanics(solid,fluids,finite-element technology)are reviewed in detail.Both hybrid and pure machine learning(ML)methods are discussed.Hybrid methods combine traditional PDE discretizations with ML methods either(1)to help model complex nonlinear constitutive relations,(2)to nonlinearly reduce the model order for efficient simulation(turbulence),or(3)to accelerate the simulation by predicting certain components in the traditional integration methods.Here,methods(1)and(2)relied on Long-Short-Term Memory(LSTM)architecture,with method(3)relying on convolutional neural networks.Pure ML methods to solve(nonlinear)PDEs are represented by Physics-Informed Neural network(PINN)methods,which could be combined with attention mechanism to address discontinuous solutions.Both LSTM and attention architectures,together with modern and generalized classic optimizers to include stochasticity for DL networks,are extensively reviewed.Kernel machines,including Gaussian processes,are provided to sufficient depth for more advanced works such as shallow networks with infinite width.Not only addressing experts,readers are assumed familiar with computational mechanics,but not with DL,whose concepts and applications are built up from the basics,aiming at bringing first-time learners quickly to the forefront of research.History and limitations of AI are recounted and discussed,with particular attention at pointing out misstatements or misconceptions of the classics,even in well-known references.Positioning and pointing control of a large-deformable beam is given as an example. 展开更多
关键词 Deep learning breakthroughs network architectures backpropagation stochastic optimization methods from classic to modern recurrent neural networks long short-term memory gated recurrent unit attention transformer kernel machines Gaussian processes libraries Physics-Informed Neural networks state-of-the-art history limitations challenges Applications to computational mechanics Finite-element matrix integration improved Gauss quadrature Multiscale geomechanics fluid-filled porous media Fluid mechanics turbulence proper orthogonal decomposition Nonlinear-manifold model-order reduction autoencoder hyper-reduction using gappy data control of large deformable beam
下载PDF
基于水动力载荷混合数据集的高精度神经网络代理模型构建
18
作者 敖愈 李云波 +1 位作者 李少凡 龚家烨 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第1期49-63,共15页
In this work,we constructed a neural network proxy model(NNPM)to estimate the hydrodynamic resistance in the ship hull structure design process,which is based on the hydrodynamic load data obtained from both the poten... In this work,we constructed a neural network proxy model(NNPM)to estimate the hydrodynamic resistance in the ship hull structure design process,which is based on the hydrodynamic load data obtained from both the potential flow method(PFM)and the viscous flow method(VFM).Here the PFM dataset is applied for the tuning,pre-training,and the VFM dataset is applied for the fine-training.By adopting the PFM and VFM datasets simultaneously,we aim to construct an NNPM to achieve the high-accuracy prediction on hydrodynamic load on ship hull structures exerted from the viscous flow,while ensuring a moderate data-acquiring workload.The high accuracy prediction on hydrodynamic loads and the relatively low dataset establishment cost of the NNPM developed demonstrated the effectiveness and feasibility of hybrid dataset based NNPM achieving a high precision prediction of hydrodynamic loads on ship hull structures.The successful construction of the high precision hydrodynamic prediction NNPM advances the artificial intelligence-assisted design(AIAD)technology for various marine structures. 展开更多
关键词 Deep learning neural network Hybrid dataset Proxy model Ship hull design Machine learning
下载PDF
Learning Rat-Like Behavior for a Small-Scale Biomimetic Robot
19
作者 Zihang Gao Guanglu Jia +3 位作者 Hongzhao Xie Qiang Huang Toshio Fukuda Qing Shi 《Engineering》 SCIE EI CAS 2022年第10期232-243,共12页
Existing biomimetic robots can perform some basic rat-like movement primitives(MPs)and simple behavior with stiff combinations of these MPs.To mimic typical rat behavior with high similarity,we propose parameterizing ... Existing biomimetic robots can perform some basic rat-like movement primitives(MPs)and simple behavior with stiff combinations of these MPs.To mimic typical rat behavior with high similarity,we propose parameterizing the behavior using a probabilistic model and movement characteristics.First,an analysis of fifteen 10 min video sequences revealed that an actual rat has six typical behaviors in the open field,and each kind of behavior contains different bio-inspired combinations of eight MPs.We used the softmax classifier to obtain the behavior-movement hierarchical probability model.Secondly,we specified the MPs using movement parameters that are static and dynamic.We obtained the predominant values of the static and dynamic movement parameters using hierarchical clustering and fuzzy C-means clustering,respectively.These predominant parameters were used for fitting the rat spinal joint trajectory using a second-order Fourier series,and the joint trajectory was generalized using a back propagation neural network with two hidden layers.Finally,the hierarchical probability model and the generalized joint trajectory were mapped to the robot as control policy and commands,respectively.We implemented the six typical behaviors on the robot,and the results show high similarity when compared with the behaviors of actual rats. 展开更多
关键词 BIOMIMETIC Bio-inspired robot Neural network learning system Behavior generation
下载PDF
Chiller faults detection and diagnosis with sensor network and adaptive 1D CNN 被引量:2
20
作者 Ke Yan Xiaokang Zhou 《Digital Communications and Networks》 SCIE CSCD 2022年第4期531-539,共9页
Computer-empowered detection of possible faults for Heating,Ventilation and Air-Conditioning(HVAC)subsystems,e.g.,chillers,is one of the most important applications in Artificial Intelligence(AI)integrated Internet of... Computer-empowered detection of possible faults for Heating,Ventilation and Air-Conditioning(HVAC)subsystems,e.g.,chillers,is one of the most important applications in Artificial Intelligence(AI)integrated Internet of Things(IoT).The cyber-physical system greatly enhances the safety and security of the working facilities,reducing time,saving energy and protecting humans’health.Under the current trends of smart building design and energy management optimization,Automated Fault Detection and Diagnosis(AFDD)of chillers integrated with IoT is highly demanded.Recent studies show that standard machine learning techniques,such as Principal Component Analysis(PCA),Support Vector Machine(SVM)and tree-structure-based algorithms,are useful in capturing various chiller faults with high accuracy rates.With the fast development of deep learning technology,Convolutional Neural Networks(CNNs)have been widely and successfully applied to various fields.However,for chiller AFDD,few existing works are adopting CNN and its extensions in the feature extraction and classification processes.In this study,we propose to perform chiller FDD using a CNN-based approach.The proposed approach has two distinct advantages over existing machine learning-based chiller AFDD methods.First,the CNN-based approach does not require the feature selection/extraction process.Since CNN is reputable with its feature extraction capability,the feature extraction and classification processes are merged,leading to a more neat AFDD framework compared to traditional approaches.Second,the classification accuracy is significantly improved compared to traditional methods using the CNN-based approach. 展开更多
关键词 CHILLER Fault detection and diagnosis Deep learning neural network Long short term memory Recurrent neural network Gated recurrent unit
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部