期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
Percolation transitions in edge-coupled interdependent networks with directed dependency links
1
作者 高彦丽 于海波 +2 位作者 周杰 周银座 陈世明 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第9期586-595,共10页
We propose a model of edge-coupled interdependent networks with directed dependency links(EINDDLs)and develop the theoretical analysis framework of this model based on the self-consistent probabilities method.The phas... We propose a model of edge-coupled interdependent networks with directed dependency links(EINDDLs)and develop the theoretical analysis framework of this model based on the self-consistent probabilities method.The phase transition behaviors and parameter thresholds of this model under random attacks are analyzed theoretically on both random regular(RR)networks and Erd¨os-Renyi(ER)networks,and computer simulations are performed to verify the results.In this EINDDL model,a fractionβof connectivity links within network B depends on network A and a fraction(1-β)of connectivity links within network A depends on network B.It is found that randomly removing a fraction(1-p)of connectivity links in network A at the initial state,network A exhibits different types of phase transitions(first order,second order and hybrid).Network B is rarely affected by cascading failure whenβis small,and network B will gradually converge from the first-order to the second-order phase transition asβincreases.We present the critical values ofβfor the phase change process of networks A and B,and give the critical values of p andβfor network B at the critical point of collapse.Furthermore,a cascading prevention strategy is proposed.The findings are of great significance for understanding the robustness of EINDDLs. 展开更多
关键词 edge-coupled interdependent networks with directed dependency links percolation transitions cascading failures robustness analysis
下载PDF
Biodiversity metrics on ecological networks: Demonstrated with animal gastrointestinal microbiomes 被引量:1
2
作者 Zhanshan(Sam)Ma Lianwei Li 《Zoological Research(Diversity and Conservation)》 2024年第1期51-65,共15页
Biodiversity has become a terminology familiar to virtually every citizen in modern societies.It is said that ecology studies the economy of nature,and economy studies the ecology of humans;then measuring biodiversity... Biodiversity has become a terminology familiar to virtually every citizen in modern societies.It is said that ecology studies the economy of nature,and economy studies the ecology of humans;then measuring biodiversity should be similar with measuring national wealth.Indeed,there have been many parallels between ecology and economics,actually beyond analogies.For example,arguably the second most widely used biodiversity metric,Simpson(1949)’s diversity index,is a function of familiar Gini-index in economics.One of the biggest challenges has been the high“diversity”of diversity indexes due to their excessive“speciation”-there are so many indexes,similar to each country’s sovereign currency-leaving confused diversity practitioners in dilemma.In 1973,Hill introduced the concept of“numbers equivalent”,which is based on Renyi entropy and originated in economics,but possibly due to his abstruse interpretation of the concept,his message was not widely received by ecologists until nearly four decades later.What Hill suggested was similar to link the US dollar to gold at the rate of$35 per ounce under the Bretton Woods system.The Hill numbers now are considered most appropriate biodiversity metrics system,unifying Shannon,Simpson and other diversity indexes.Here,we approach to another paradigmatic shift-measuring biodiversity on ecological networks-demonstrated with animal gastrointestinal microbiomes representing four major invertebrate classes and all six vertebrate classes.The network diversity can reveal the diversity of species interactions,which is a necessary step for understanding the spatial and temporal structures and dynamics of biodiversity across environmental gradients. 展开更多
关键词 Biodiversity on network Hill numbers Animal gut microbiome network link diversity network species diversity network abundance-weighted link diversity
下载PDF
Research on Weighted Directed Dynamic Multiplexing Network of World Grain Trade Based on Improved MLP Framework
3
作者 Shanyan Zhu Shicai Gong 《Journal of Computer and Communications》 2023年第7期191-207,共17页
As the main food source for humans, the global movement of the three major grains significantly impacts human survival and development. To investigate the evolution of the world cereal trade network and its developmen... As the main food source for humans, the global movement of the three major grains significantly impacts human survival and development. To investigate the evolution of the world cereal trade network and its development trend, a weighted directed dynamic multiplexed network was established using historical data on cereal trade, cereal import dependency ratio, and arable land per capita. Inspired by the MLP framework, we redefined the weight determination method for computing layer weights and edge weights of the target layer, modified the CN, RA, AA, and PA indicators, and proposed the node similarity indicator for weighted directed networks. The AUC metric, which measures the accuracy of the algorithm, has also been improved in order to finally obtain the link prediction results for the grain trading network. The prediction results were processed, such as web-based presentation and community partition. It was found that the number of generalized trade agreements does not have a decisive impact on inter-country cereal trade. The former large grain exporters continue to play an important role in this trade network. In the future, the world trade in cereals will develop in the direction of more frequent intercontinental trade and gradually weaken the intracontinental cereal trade. 展开更多
关键词 MLP Framework Food Security Dynamic Multiplexed networks Trade network Link Forecasting
下载PDF
ADAPTIVE PREDICTIVE CONTROL OF NEAR-SPACE VEHICLE USING FUNCTIONAL LINK NETWORK 被引量:3
4
作者 都延丽 吴庆宪 姜长生 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2010年第2期148-154,共7页
A novel nonlinear adaptive control method is presented for a near-space hypersonic vehicle (NHV) in the presence of strong uncertainties and disturbances. The control law consists of the optimal generalized predicti... A novel nonlinear adaptive control method is presented for a near-space hypersonic vehicle (NHV) in the presence of strong uncertainties and disturbances. The control law consists of the optimal generalized predictive controller (OGPC) and the functional link network (FLN) direct adaptive law. OGPC is a continuous-time nonlinear predictive control law. The FLN adaptive law is used to offset the unknown uncertainties and disturbances in a flight through the online learning. The learning process does not need any offline training phase. The stability analyses of the NHV close-loop system are provided and it is proved that the system error and the weight learning error are uniformly ultimately hounded. Simulation results show the satisfactory performance of the con- troller for the attitude tracking. 展开更多
关键词 predictive control systems adaptive control systems UNCERTAINTY functional link network near-space vehicle
下载PDF
Adaptive functional link network control of near-space vehicles with dynamical uncertainties 被引量:5
5
作者 Yanli Du Qingxian Wu Changsheng Jiang Jie Wen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第5期868-876,共9页
The control law design for a near-space hypersonic vehicle(NHV) is highly challenging due to its inherent nonlinearity,plant uncertainties and sensitivity to disturbances.This paper presents a novel functional link ... The control law design for a near-space hypersonic vehicle(NHV) is highly challenging due to its inherent nonlinearity,plant uncertainties and sensitivity to disturbances.This paper presents a novel functional link network(FLN) control method for an NHV with dynamical thrust and parameter uncertainties.The approach devises a new partially-feedback-functional-link-network(PFFLN) adaptive law and combines it with the nonlinear generalized predictive control(NGPC) algorithm.The PFFLN is employed for approximating uncertainties in flight.Its weights are online tuned based on Lyapunov stability theorem for the first time.The learning process does not need any offline training phase.Additionally,a robust controller with an adaptive gain is designed to offset the approximation error.Finally,simulation results show a satisfactory performance for the NHV attitude tracking,and also illustrate the controller's robustness. 展开更多
关键词 adaptive control system dynamical uncertainties partially feedback functional link network near-space vehicle.
下载PDF
Functional Link Neural Network for Predicting Crystallization Temperature of Ammonium Chloride in Air Cooler System 被引量:3
6
作者 Jin Haozhe Gu Yong +3 位作者 Ren Jia Wu Xiangyao Quan Jianxun Xu Linfengyi 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2020年第2期86-92,共7页
The air cooler is an important equipment in the petroleum refining industry.Ammonium chloride(NH4 Cl)deposition-induced corrosion is one of its main failure forms.In this study,the ammonium salt crystallization temper... The air cooler is an important equipment in the petroleum refining industry.Ammonium chloride(NH4 Cl)deposition-induced corrosion is one of its main failure forms.In this study,the ammonium salt crystallization temperature is chosen as the key decision variable of NH4 Cl deposition-induced corrosion through in-depth mechanism research and experimental analysis.The functional link neural network(FLNN)is adopted as the basic algorithm for modeling because of its advantages in dealing with non-linear problems and its fast-computational ability.A hybrid FLNN attached to a small norm is built to improve the generalization performance of the model.Then,the trained model is used to predict the NH4 Cl salt crystallization temperature in the air cooler of a sour water stripper plant.Experimental results show the proposed improved FLNN algorithm can achieve better generalization performance than the PLS,the back propagation neural network,and the conventional FLNN models. 展开更多
关键词 air cooler NH4Cl salt crystallization temperature DATA-DRIVEN functional link neural network particle swarm optimization
下载PDF
Optimized functional linked neural network for predicting diaphragm wall deflection induced by braced excavations in clays 被引量:4
7
作者 Chengyu Xie Hoang Nguyen +1 位作者 Yosoon Choi Danial Jahed Armaghani 《Geoscience Frontiers》 SCIE CAS CSCD 2022年第2期34-51,共18页
Deep excavation during the construction of underground systems can cause movement on the ground,especially in soft clay layers.At high levels,excessive ground movements can lead to severe damage to adjacent structures... Deep excavation during the construction of underground systems can cause movement on the ground,especially in soft clay layers.At high levels,excessive ground movements can lead to severe damage to adjacent structures.In this study,finite element analyses(FEM)and the hardening small strain(HSS)model were performed to investigate the deflection of the diaphragm wall in the soft clay layer induced by braced excavations.Different geometric and mechanical properties of the wall were investigated to study the deflection behavior of the wall in soft clays.Accordingly,1090 hypothetical cases were surveyed and simulated based on the HSS model and FEM to evaluate the wall deflection behavior.The results were then used to develop an intelligent model for predicting wall deflection using the functional linked neural network(FLNN)with different functional expansions and activation functions.Although the FLNN is a novel approach to predict wall deflection;however,in order to improve the accuracy of the FLNN model in predicting wall deflection,three swarm-based optimization algorithms,such as artificial bee colony(ABC),Harris’s hawk’s optimization(HHO),and hunger games search(HGS),were hybridized to the FLNN model to generate three novel intelligent models,namely ABC-FLNN,HHO-FLNN,HGS-FLNN.The results of the hybrid models were then compared with the basic FLNN and MLP models.They revealed that FLNN is a good solution for predicting wall deflection,and the application of different functional expansions and activation functions has a significant effect on the outcome predictions of the wall deflection.It is remarkably interesting that the performance of the FLNN model was better than the MLP model with a mean absolute error(MAE)of 19.971,root-mean-squared error(RMSE)of 24.574,and determination coefficient(R^(2))of 0.878.Meanwhile,the performance of the MLP model only obtained an MAE of 20.321,RMSE of 27.091,and R^(2)of 0.851.Furthermore,the results also indicated that the proposed hybrid models,i.e.,ABC-FLNN,HHO-FLNN,HGS-FLNN,yielded more superior performances than those of the FLNN and MLP models in terms of the prediction of deflection behavior of diaphragm walls with an MAE in the range of 11.877 to 12.239,RMSE in the range of 15.821 to 16.045,and R^(2)in the range of 0.949 to 0.951.They can be used as an alternative tool to simulate diaphragm wall deflections under different conditions with a high degree of accuracy. 展开更多
关键词 Diaphragm wall deflection Braced excavation Finite element analysis Clays Meta-heuristic algorithms Functional linked neural network
下载PDF
Numeral eddy current sensor modelling based on genetic neural network 被引量:1
8
作者 俞阿龙 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第3期878-882,共5页
This paper presents a method used to the numeral eddy current sensor modelling based on the genetic neural network to settle its nonlinear problem. The principle and algorithms of genetic neural network are introduced... This paper presents a method used to the numeral eddy current sensor modelling based on the genetic neural network to settle its nonlinear problem. The principle and algorithms of genetic neural network are introduced. In this method, the nonlinear model parameters of the numeral eddy current sensor are optimized by genetic neural network (GNN) according to measurement data. So the method remains both the global searching ability of genetic algorithm and the good local searching ability of neural network. The nonlinear model has the advantages of strong robustness, on-line modelling and high precision. The maximum nonlinearity error can be reduced to 0.037% by using GNN. However, the maximum nonlinearity error is 0.075% using the least square method. 展开更多
关键词 MODELLING numeral eddy current sensor functional link neural network genetic neural network
下载PDF
The determination of the link with the smallest end-to-end network latency in ethernet architecture 被引量:3
9
作者 梁永生 张乃通 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2007年第4期489-495,共7页
Ethernet fundamental and its data transmission model are introduced in brief and end-to-end network latency was analyzed in this paper. On the premise of not considering transmission quality and transmission cost, lat... Ethernet fundamental and its data transmission model are introduced in brief and end-to-end network latency was analyzed in this paper. On the premise of not considering transmission quality and transmission cost, latency was the function of the rest of network resource parameter (NRP). The relation between the number of nodes and that of end-to-end links was presented. In ethernet architecture, the algorithm to determine the link with the smallest latency is a polynomial issue when the number of network nodes is limited, so it can be solved by way of polynomial equations. Latency measuring is the key issue to determine the link with the smallest network latency. 3-node brigade (regiment) level network centric warfare (NCW) demonstration platform was studied and the latency between the detectors and weapon control stations was taken as an example. The algorithm of end-to-end network latency and link information in NCW was presented. The algorithm program based on Server/Client architecture was developed. The data transmission optimal link is one whose end-to-end latency is the smallest. This paper solves the key issue to determine the link whose end-to-end latency is the smallest in ethernet architecture. The study can be widely applied to determine the optimal link which is in the complex network environment of multiple service provision points. 展开更多
关键词 ethernet architecture metwork latency link with the smallest network latency network centric warfare (NCW) network latency algorithm
下载PDF
A New Modeling Method Based on Genetic Neural Network for Numeral Eddy Current Sensor
10
作者 Along Yu Zheng Li 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2006年第A03期611-613,共3页
In this paper,we present a method used to the numeral eddy current sensor modeling based on genetic neural network to settle its nonlinear problem.The principle and algorithms of genetic neural network are introduced.... In this paper,we present a method used to the numeral eddy current sensor modeling based on genetic neural network to settle its nonlinear problem.The principle and algorithms of genetic neural network are introduced.In this method, the nonlinear model parameters of the numeral eddy current sensor are optimized by genetic neural network (GNN) according to measurement data.So the method remains both the global searching ability of genetic algorithm and the good local searching ability of neural network.The nonlinear model has the advantages of strong robustness,on-line scaling and high precision.The maximum nonlinearity error can be reduced to 0.037% using GNN.However,the maximum nonlinearity error is 0.075% using least square method (LMS). 展开更多
关键词 MODELING eddy current sensor functional link neural network genetic algorithm genetic neural network
下载PDF
Link Budget and Networking Analysis of FuTURE 4G TDD Trial System
11
作者 Xu Xiaodong Li Yazhuo Tao Xiaofeng (Wireless Technology Innovation Institute (WTI),Beijing University of Posts and Telecommunications,Beijing 100876,China) 《ZTE Communications》 2007年第3期6-9,共4页
The FuTURE 4G Time Division Duplex (TDD) trial system uses 3.5 GHz carrier frequency and several crucial technologies including broadband Multiple Input Multiple Output (MIMO) and Orthogonal Frequency Division Multipl... The FuTURE 4G Time Division Duplex (TDD) trial system uses 3.5 GHz carrier frequency and several crucial technologies including broadband Multiple Input Multiple Output (MIMO) and Orthogonal Frequency Division Multiplexing (OFDM). These technologies challenge the link budget and networking analysis of the FuTURE 4G TDD trial network. This paper analyzes the practical 3.5 GHz propagation model and the link budget of Radio Frequency (RF) parameters of the trial system. Moreover,it introduces networking analysis and network planning of the trial system,which combines the field test results of the MIMO system. The FuTURE 4G TDD trial system and its trial network have been accomplished with successful checkup. The trial system fulfills all the requirements with two Access Points (AP) and three Mobile Terminals (MT),which supports multi-user,mobility,a high peak rate of 100 Mb/s,High-Definition TV (HDTV),high-speed data download,and Voice over IP (VoIP) services. 展开更多
关键词 TDD Link Budget and networking Analysis of FuTURE 4G TDD Trial System BLER Radio MIMO DBM
下载PDF
Semantic Link Network Based Knowledge Graph Representation and Construction
12
作者 Weiyu Guo Ruixiang Jia Ying Zhang 《Journal on Artificial Intelligence》 2021年第2期73-79,共7页
A knowledge graph consists of a set of interconnected typed entities and their attributes,which shows a better performance to organize,manage and understand knowledge.However,because knowledge graphs contain a lot of ... A knowledge graph consists of a set of interconnected typed entities and their attributes,which shows a better performance to organize,manage and understand knowledge.However,because knowledge graphs contain a lot of knowledge triples,it is difficult to directly display to researchers.Semantic Link Network is an attempt,and it can deal with the construction,representation and reasoning of semantics naturally.Based on the Semantic Link Network,this paper explores the representation and construction of knowledge graph,and develops an academic knowledge graph prototype system to realize the representation,construction and visualization of knowledge graph. 展开更多
关键词 Knowledge graph semantic link network knowledge application
下载PDF
Distributed Satellite Cluster Network:a Survey
13
作者 董飞鸿 王敬超 +1 位作者 杨杰 蔡春晓 《Journal of Donghua University(English Edition)》 EI CAS 2015年第2期332-336,共5页
The ability of the monolithic satellite,satellite orbit(especially GEO),and radio resource are very limited,so the development of distributed satellite cluster network(DSCN) receives more and more worldwide attention.... The ability of the monolithic satellite,satellite orbit(especially GEO),and radio resource are very limited,so the development of distributed satellite cluster network(DSCN) receives more and more worldwide attention.In this paper,DSCN is surveyed and the study status of DSCN architecture design is summarized.The formation flying of spacecrafts,reconfiguration,networking,and applied research on distributed satellite spacecraft are described in detail.The DSCN will provide a great technology innovation for space information network,satellite communications,satellite navigation,deep space exploration,and space remote sensing.In addition,this paper points out future trends of the DSCN development. 展开更多
关键词 topology navigation networking collision summarized spacecraft links surveyed coverage cooperate
下载PDF
Effective link quality estimation as a means to improved end-to-end packet delivery in high traffic mobile ad hoc networks
14
作者 Syed Rehan Afzal Sander Stuijk +1 位作者 Majid Nabi Twan Basten 《Digital Communications and Networks》 SCIE 2017年第3期150-163,共14页
Accurate link quality estimation is a fundamental building block in quality aware multi hop routing. In an inherently lossy, unreliable and dynamic medium such as wireless, the task of accurate estimation becomes very... Accurate link quality estimation is a fundamental building block in quality aware multi hop routing. In an inherently lossy, unreliable and dynamic medium such as wireless, the task of accurate estimation becomes very challenging. Over the years ETX has been widely used as a reliable link quality estimation metric. However, more recently it has been established that under heavy traffic loads ETX performance gets significantly worse. We examine the ETX metric's behavior in detail with respect to the MAC layer and UDP data; and identify the causes of its unreliability. Motivated by the observations made in our analysis, we present the design and implementation of our link quality measurement metric xDDR - a variation of ETX. This article extends xDDR to support network mobility. Our experiments show that xDDR substantially outperforms minimum hop count, ETX and HETX in terms of end-to-end packet delivery ratio in static as well as mobile scenarios. 展开更多
关键词 Asymmetric link quality Link-quality measurement Wireless ad hoe networks
下载PDF
A Machine Learning Approach for Artifact Removal from Brain Signal
15
作者 Sandhyalati Behera Mihir Narayan Mohanty 《Computer Systems Science & Engineering》 SCIE EI 2023年第5期1455-1467,共13页
Electroencephalography(EEG),helps to analyze the neuronal activity of a human brain in the form of electrical signals with high temporal resolution in the millisecond range.To extract clean clinical information from E... Electroencephalography(EEG),helps to analyze the neuronal activity of a human brain in the form of electrical signals with high temporal resolution in the millisecond range.To extract clean clinical information from EEG signals,it is essential to remove unwanted artifacts that are due to different causes including at the time of acquisition.In this piece of work,the authors considered the EEG signal contaminated with Electrocardiogram(ECG)artifacts that occurs mostly in cardiac patients.The clean EEG is taken from the openly available Mendeley database whereas the ECG signal is collected from the Physionet database to create artifacts in the EEG signal and verify the proposed algorithm.Being the artifactual signal is non-linear and non-stationary the Random Vector Functional Link Network(RVFLN)model is used in this case.The Machine Learning approach has taken a leading role in every field of current research and RVFLN is one of them.For the proof of adaptive nature,the model is designed with EEG as a reference and artifactual EEG as input.The peaks of ECG signals are evaluated for artifact estimation as the amplitude is higher than the EEG signal.To vary the weight and reduce the error,an exponentially weighted Recursive Least Square(RLS)algorithm is used to design the adaptive filter with the novel RVFLN model.The random vectors are considered in this model with a radial basis function to satisfy the required signal experimentation.It is found that the result is excellent in terms of Mean Square Error(MSE),Normalized Mean Square Error(NMSE),Relative Error(RE),Gain in Signal to Artifact Ratio(GSAR),Signal Noise Ratio(SNR),Information Quantity(IQ),and Improvement in Normalized Power Spectrum(INPS).Also,the proposed method is compared with the earlier methods to show its efficacy. 展开更多
关键词 Random vector functional link network(RVFLN) information quantity(IQ) constrained independent component analysis(cICA)
下载PDF
MODEL REFERENCE ADAPTIVE CONTROL BASED ON NONLINEAR COMPENSATION FOR TURBOFAN ENGINE 被引量:4
16
作者 潘慕绚 黄金泉 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第3期215-221,共7页
The design of a turbofan rotor speed control system, using model reference adaptive control(MRAC) method with input and output measurements, is discussed for the purpose of practical application. The nonlinear compe... The design of a turbofan rotor speed control system, using model reference adaptive control(MRAC) method with input and output measurements, is discussed for the purpose of practical application. The nonlinear compensator based on functional link neural network is used to deal with the engine nonlinearity and the hardware-in-loop simulation is also developed. The results show that the nonlinear MRAC controller has the adequate performance of compensating and adapting nonlinearity arising from the change of engine state or working environment. Such feature demonstrates potential practical applications of MRAC for aeroengine control system. 展开更多
关键词 turbofan engin model reference adaptive control(MRAC) functional link neural network (FLNN) hardware-in-loop(HIL) simulation
下载PDF
RVFLN-based online adaptive semi-supervised learning algorithm with application to product quality estimation of industrial processes 被引量:5
17
作者 DAI Wei HU Jin-cheng +2 位作者 CHENG Yu-hu WANG Xue-song CHAI Tian-you 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第12期3338-3350,共13页
Direct online measurement on product quality of industrial processes is difficult to be realized,which leads to a large number of unlabeled samples in modeling data.Therefore,it needs to employ semi-supervised learnin... Direct online measurement on product quality of industrial processes is difficult to be realized,which leads to a large number of unlabeled samples in modeling data.Therefore,it needs to employ semi-supervised learning(SSL)method to establish the soft sensor model of product quality.Considering the slow time-varying characteristic of industrial processes,the model parameters should be updated smoothly.According to this characteristic,this paper proposes an online adaptive semi-supervised learning algorithm based on random vector functional link network(RVFLN),denoted as OAS-RVFLN.By introducing a L2-fusion term that can be seen a weight deviation constraint,the proposed algorithm unifies the offline and online learning,and achieves smoothness of model parameter update.Empirical evaluations both on benchmark testing functions and datasets reveal that the proposed OAS-RVFLN can outperform the conventional methods in learning speed and accuracy.Finally,the OAS-RVFLN is applied to the coal dense medium separation process in coal industry to estimate the ash content of coal product,which further verifies its effectiveness and potential of industrial application. 展开更多
关键词 semi-supervised learning(SSL) L2-fusion term online adaptation random vector functional link network(RVFLN)
下载PDF
Adaptive Control of Discrete-time Nonlinear Systems Using ITF-ORVFL 被引量:3
18
作者 Xiaofei Zhang Hongbin Ma +1 位作者 Wenchao Zuo Man Luo 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第3期556-563,共8页
Random vector functional ink(RVFL)networks belong to a class of single hidden layer neural networks in which some parameters are randomly selected.Their network structure in which contains the direct links between inp... Random vector functional ink(RVFL)networks belong to a class of single hidden layer neural networks in which some parameters are randomly selected.Their network structure in which contains the direct links between inputs and outputs is unique,and stability analysis and real-time performance are two difficulties of the control systems based on neural networks.In this paper,combining the advantages of RVFL and the ideas of online sequential extreme learning machine(OS-ELM)and initial-training-free online extreme learning machine(ITFOELM),a novel online learning algorithm which is named as initial-training-free online random vector functional link algo rithm(ITF-ORVFL)is investigated for training RVFL.The link vector of RVFL network can be analytically determined based on sequentially arriving data by ITF-ORVFL with a high learning speed,and the stability for nonlinear systems based on this learning algorithm is analyzed.The experiment results indicate that the proposed ITF-ORVFL is effective in coping with nonparametric uncertainty. 展开更多
关键词 Adaptive control initial-training-free online learning algorithm random vector functional link networks
下载PDF
Correction of sensor’s dynamic error caused by system limitations
19
作者 吴健 张志杰 《Journal of Measurement Science and Instrumentation》 CAS 2012年第1期75-79,共5页
The method based on particle swarm optimization(PSO)integrated with functional link articial neural network(FLANN)for correcting dynamic characteristics of sensor is used to reduce sensor’s dynamic error caused by it... The method based on particle swarm optimization(PSO)integrated with functional link articial neural network(FLANN)for correcting dynamic characteristics of sensor is used to reduce sensor’s dynamic error caused by its system limitations.Combining the advantages of PSO and FLANN,with this method a dynamic compensator can be realized without knowing the dynamic model of the sensor.According to the input and output of the sensor and the reference model,the weights of the network trained were used to initialize one particle station of the whole particle swarm when the training of the FLANN had been finished.Then PSO algorithm was applied,and the global best particle station of the particle swarm was the parameters of the compensator.The feasibility of dynamic compensation method is tested.Simulation results from simulator of sensor show that the results after being compensated have given a good description to input signals. 展开更多
关键词 particle swarm optimization(PSO) functional link articial neural network(FLANN) dynamic error dynamic compensation
下载PDF
A dynamic logistic regression for network link prediction 被引量:2
20
作者 ZHOU Jing HUANG DanYang WANG HanSheng 《Science China Mathematics》 SCIE CSCD 2017年第1期165-176,共12页
In social network analysis, link prediction is a problem of fundamental importance. How to conduct a comprehensive and principled link prediction, by taking various network structure information into consideration,is ... In social network analysis, link prediction is a problem of fundamental importance. How to conduct a comprehensive and principled link prediction, by taking various network structure information into consideration,is of great interest. To this end, we propose here a dynamic logistic regression method. Specifically, we assume that one has observed a time series of network structure. Then the proposed model dynamically predicts future links by studying the network structure in the past. To estimate the model, we find that the standard maximum likelihood estimation(MLE) is computationally forbidden. To solve the problem, we introduce a novel conditional maximum likelihood estimation(CMLE) method, which is computationally feasible for large-scale networks. We demonstrate the performance of the proposed method by extensive numerical studies. 展开更多
关键词 conditional likelihood dynamic logistic regression link prediction social networks
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部