移动自组网(Mobile Ad Hoc Network, MANET)主要应用于军事活动、灾后救援等大规模的活动中,随着节点数的增加、移动速度的加快,网络拓扑变得更加复杂,网络稳定性和性能也随之下降。频繁的网络拓扑变化会导致簇结构变得不稳定并且控制...移动自组网(Mobile Ad Hoc Network, MANET)主要应用于军事活动、灾后救援等大规模的活动中,随着节点数的增加、移动速度的加快,网络拓扑变得更加复杂,网络稳定性和性能也随之下降。频繁的网络拓扑变化会导致簇结构变得不稳定并且控制开销也会增加。为了解决这一问题,提出了一种改进的加权分簇算法,通过仿真表明,该算法可以有效地提高大规模移动自组网的性能。展开更多
Solving the controller placement problem (CPP) in an SDN architecture with multiple controllers has a significant impact on control overhead in the network, especially in multihop wireless networks (MWNs). The generat...Solving the controller placement problem (CPP) in an SDN architecture with multiple controllers has a significant impact on control overhead in the network, especially in multihop wireless networks (MWNs). The generated control overhead consists of controller-device and inter-controller communications to discover the network topology, exchange configurations, and set up and modify flow tables in the control plane. However, due to the high complexity of the proposed optimization model to the CPP, heuristic algorithms have been reported to find near-optimal solutions faster for large-scale wired networks. In this paper, the objective is to extend those existing heuristic algorithms to solve a proposed optimization model to the CPP in software-<span>defined multihop wireless networking</span><span> (SDMWN).</span>Our results demonstrate that using ranking degrees assigned to the possible controller placements, including the average distance to other devices as a degree or the connectivity degree of each placement, the extended heuristic algorithms are able to achieve the optimal solution in small-scale networks in terms of the generated control overhead and the number of controllers selected in the network. As a result, using extended heuristic algorithms, the average number of hops among devices and their assigned controllers as well as among controllers will be reduced. Moreover, these algorithms are able tolower<span "=""> </span>the control overhead in large-scale networks and select fewer controllers compared to an extended algorithm that solves the CPP in SDMWN based on a randomly selected controller placement approach.展开更多
文摘移动自组网(Mobile Ad Hoc Network, MANET)主要应用于军事活动、灾后救援等大规模的活动中,随着节点数的增加、移动速度的加快,网络拓扑变得更加复杂,网络稳定性和性能也随之下降。频繁的网络拓扑变化会导致簇结构变得不稳定并且控制开销也会增加。为了解决这一问题,提出了一种改进的加权分簇算法,通过仿真表明,该算法可以有效地提高大规模移动自组网的性能。
文摘Solving the controller placement problem (CPP) in an SDN architecture with multiple controllers has a significant impact on control overhead in the network, especially in multihop wireless networks (MWNs). The generated control overhead consists of controller-device and inter-controller communications to discover the network topology, exchange configurations, and set up and modify flow tables in the control plane. However, due to the high complexity of the proposed optimization model to the CPP, heuristic algorithms have been reported to find near-optimal solutions faster for large-scale wired networks. In this paper, the objective is to extend those existing heuristic algorithms to solve a proposed optimization model to the CPP in software-<span>defined multihop wireless networking</span><span> (SDMWN).</span>Our results demonstrate that using ranking degrees assigned to the possible controller placements, including the average distance to other devices as a degree or the connectivity degree of each placement, the extended heuristic algorithms are able to achieve the optimal solution in small-scale networks in terms of the generated control overhead and the number of controllers selected in the network. As a result, using extended heuristic algorithms, the average number of hops among devices and their assigned controllers as well as among controllers will be reduced. Moreover, these algorithms are able tolower<span "=""> </span>the control overhead in large-scale networks and select fewer controllers compared to an extended algorithm that solves the CPP in SDMWN based on a randomly selected controller placement approach.