In this paper, we propose and evaluate outage performance of a mixed amplify-and-forward(AF) and decode-and-forward(DF) relaying protocol in underlay cognitive radio. Different from the conventional AF and DF protocol...In this paper, we propose and evaluate outage performance of a mixed amplify-and-forward(AF) and decode-and-forward(DF) relaying protocol in underlay cognitive radio. Different from the conventional AF and DF protocols, in the proposed protocol, a secondary source attempts to transmit its signal to a secondary destination with help of two secondary relays. One secondary relay always operates in AF mode, while the remaining one always operates in DF mode. Moreover, we also propose a relay selection method, which relies on the decoding status at the DF relay. For performance evaluation and comparison, we derive the exact and approximate closedform expressions of the outage probability for the proposed protocol over Rayleigh fading channel. Finally, we run Monte Carlo simulations to verify the derivations. Results presented that the proposed protocol obtains a diversity order of three and the outage performance of our scheme is between that of the conventional underlay DF protocol and that of the conventional underlay AF protocol.展开更多
Location based social networks( LBSNs) provide location specific data generated from smart phone into online social networks thus people can share their points of interest( POIs). POI collections are complex and c...Location based social networks( LBSNs) provide location specific data generated from smart phone into online social networks thus people can share their points of interest( POIs). POI collections are complex and can be influenced by various factors,such as user preferences,social relationships and geographical influence. Therefore,recommending new locations in LBSNs requires to take all these factors into consideration. However,one problem is how to determine optimal weights of influencing factors in an algorithm in which these factors are combined. The user similarity can be obtained from the user check-in data,or from the user friend information,or based on the different geographical influences on each user's check-in activities. In this paper,we propose an algorithm that calculates the user similarity based on check-in records and social relationships,using a proposed weighting function to adjust the weights of these two kinds of similarities based on the geographical distance between users. In addition,a non-parametric density estimation method is applied to predict the unique geographical influence on each user by getting the density probability plot of the distance between every pair of user's check-in locations. Experimental results,using foursquare datasets,have shown that comparisons between the proposed algorithm and the other five baseline recommendation algorithms in LBSNs demonstrate that our proposed algorithm is superior in accuracy and recall,furthermore solving the sparsity problem.展开更多
The problem of identification of friend-or-foe aircraft in the actual application condition is addressed.A hybrid algorithm combining fuzzy neutral network with probability factor(FNNP),multi-level fuzzy comprehensi...The problem of identification of friend-or-foe aircraft in the actual application condition is addressed.A hybrid algorithm combining fuzzy neutral network with probability factor(FNNP),multi-level fuzzy comprehensive evaluation and the DempsterShafer(D-S) theory is proposed.This hybrid algorithm constructs a complete process from generating the fuzzy database to the final identification,realizes the identification of friend-or-foe automatically if the training samples or expert’s experience can be obtained,and reduces the effect of uncertainties in the process of identification.At the same time,the whole algorithm can update the identification result with the augment of observations.The performance of the proposed algorithm is assessed by simulations.Results show that the proposed algorithm can successfully deduce the aircraft’s identity even if the observations have measurement errors.展开更多
We investigate the impact of network topology on blocking probability in wavelength-routed networks using a dynamic traffic growth model. The dependence of blocking on different physical parameters is assessed.
We investigate the secrecy outage performance of maximal ratio combining(MRC) in cognitive radio networks over Rayleigh fading channels. In a single-input multiple-output wiretap system, we consider a secondary user(S...We investigate the secrecy outage performance of maximal ratio combining(MRC) in cognitive radio networks over Rayleigh fading channels. In a single-input multiple-output wiretap system, we consider a secondary user(SU-TX) that transmits confidential messages to another secondary user(SU-RX) equipped with M(M ≥ 1)antennas where the MRC technique is adopted to improve its received signal-to-noise ratio. Meanwhile, an eavesdropper equipped with N(N ≥ 1) antennas adopts the MRC scheme to overhear the information between SU-TX and SU-RX. SU-TX adopts the underlay strategy to guarantee the service quality of the primary user without spectrum sensing. We derive the closed-form expressions for an exact and asymptotic secrecy outage probability.展开更多
基金supported by the 2016 research fund of University of Ulsan
文摘In this paper, we propose and evaluate outage performance of a mixed amplify-and-forward(AF) and decode-and-forward(DF) relaying protocol in underlay cognitive radio. Different from the conventional AF and DF protocols, in the proposed protocol, a secondary source attempts to transmit its signal to a secondary destination with help of two secondary relays. One secondary relay always operates in AF mode, while the remaining one always operates in DF mode. Moreover, we also propose a relay selection method, which relies on the decoding status at the DF relay. For performance evaluation and comparison, we derive the exact and approximate closedform expressions of the outage probability for the proposed protocol over Rayleigh fading channel. Finally, we run Monte Carlo simulations to verify the derivations. Results presented that the proposed protocol obtains a diversity order of three and the outage performance of our scheme is between that of the conventional underlay DF protocol and that of the conventional underlay AF protocol.
文摘Location based social networks( LBSNs) provide location specific data generated from smart phone into online social networks thus people can share their points of interest( POIs). POI collections are complex and can be influenced by various factors,such as user preferences,social relationships and geographical influence. Therefore,recommending new locations in LBSNs requires to take all these factors into consideration. However,one problem is how to determine optimal weights of influencing factors in an algorithm in which these factors are combined. The user similarity can be obtained from the user check-in data,or from the user friend information,or based on the different geographical influences on each user's check-in activities. In this paper,we propose an algorithm that calculates the user similarity based on check-in records and social relationships,using a proposed weighting function to adjust the weights of these two kinds of similarities based on the geographical distance between users. In addition,a non-parametric density estimation method is applied to predict the unique geographical influence on each user by getting the density probability plot of the distance between every pair of user's check-in locations. Experimental results,using foursquare datasets,have shown that comparisons between the proposed algorithm and the other five baseline recommendation algorithms in LBSNs demonstrate that our proposed algorithm is superior in accuracy and recall,furthermore solving the sparsity problem.
文摘The problem of identification of friend-or-foe aircraft in the actual application condition is addressed.A hybrid algorithm combining fuzzy neutral network with probability factor(FNNP),multi-level fuzzy comprehensive evaluation and the DempsterShafer(D-S) theory is proposed.This hybrid algorithm constructs a complete process from generating the fuzzy database to the final identification,realizes the identification of friend-or-foe automatically if the training samples or expert’s experience can be obtained,and reduces the effect of uncertainties in the process of identification.At the same time,the whole algorithm can update the identification result with the augment of observations.The performance of the proposed algorithm is assessed by simulations.Results show that the proposed algorithm can successfully deduce the aircraft’s identity even if the observations have measurement errors.
文摘We investigate the impact of network topology on blocking probability in wavelength-routed networks using a dynamic traffic growth model. The dependence of blocking on different physical parameters is assessed.
基金Project supported in part by the National Natural Science Foundation of China(Nos.61401372 and 61531016)the Research Fund for the Doctoral Program of Higher Education of China(No.20130182120017)+1 种基金the Natural Science Foundation of CQ CSTC(No.cstc2013jcyj A40040)the Fundamental Research Funds for the Central Universities,China(No.XDJK2015B023)
文摘We investigate the secrecy outage performance of maximal ratio combining(MRC) in cognitive radio networks over Rayleigh fading channels. In a single-input multiple-output wiretap system, we consider a secondary user(SU-TX) that transmits confidential messages to another secondary user(SU-RX) equipped with M(M ≥ 1)antennas where the MRC technique is adopted to improve its received signal-to-noise ratio. Meanwhile, an eavesdropper equipped with N(N ≥ 1) antennas adopts the MRC scheme to overhear the information between SU-TX and SU-RX. SU-TX adopts the underlay strategy to guarantee the service quality of the primary user without spectrum sensing. We derive the closed-form expressions for an exact and asymptotic secrecy outage probability.