期刊文献+
共找到197篇文章
< 1 2 10 >
每页显示 20 50 100
MARKOV SKELETON PROCESS IN PERT NETWORKS 被引量:1
1
作者 孔祥星 张玄 候振挺 《Acta Mathematica Scientia》 SCIE CSCD 2010年第5期1440-1448,共9页
In this article, we investigate Programming Evaluation and Review Technique networks with independently and generally distributed activity durations. For any path in this network, we select all the activities related ... In this article, we investigate Programming Evaluation and Review Technique networks with independently and generally distributed activity durations. For any path in this network, we select all the activities related to this path such that the completion time of the sub-network (only consisting of all the related activities) is equal to the completion time of this path. We use the elapsed time as the supplementary variables and model this sub-network as a Markov skeleton process, the state space is related to the subnetwork structure. Then use the backward equation to compute the distribution of the sub-network's completion time, which is an important rule in project management and scheduling. 展开更多
关键词 PERT networks Markov skeleton process backward equation
下载PDF
神经网络Skeletonization算法在优化锅炉运行参数中的应用 被引量:6
2
作者 崔育奎 陶丽 崇培安 《锅炉技术》 北大核心 2016年第2期21-26,共6页
对将神经网络Skeletonization算法进行改进,运用到优化调整锅炉性能参数的方法,用神经网络模型预测锅炉运行中需要优化的性能参数。通过神经网络的学习,模拟性能参数的影响因素与性能参数之间的映射函数,再通过改进Skeletonization算法... 对将神经网络Skeletonization算法进行改进,运用到优化调整锅炉性能参数的方法,用神经网络模型预测锅炉运行中需要优化的性能参数。通过神经网络的学习,模拟性能参数的影响因素与性能参数之间的映射函数,再通过改进Skeletonization算法对网络模型进一步计算,找出哪些影响因素对性能参数的影响较大,为快速有效准确的机组运行优化提供指导依据和方向。这种方法不仅能为机组运行优化提供直观的理论根据,同时对锅炉的运行不产生负面影响,可以实现在线优化运行。通过计算影响因素的权重值,对性能参数准确预报,为锅炉机组的性能优化调整提供便捷、准确、全面的方案。 展开更多
关键词 超临界锅炉 性能优化 神经网络 skeletonization算法
下载PDF
3D multipath planning for UAV based on network graph 被引量:1
3
作者 Xin Liu Chengping Zhou Mingyue Ding 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第4期640-646,共7页
According to the characteristic and the requirement of multipath planning, a new multipath planning method is proposed based on network. This method includes two steps: the construction of network and multipath searc... According to the characteristic and the requirement of multipath planning, a new multipath planning method is proposed based on network. This method includes two steps: the construction of network and multipath searching. The construction of network proceeds in three phases: the skeleton extraction of the configuration space, the judgment of the cross points in the skeleton and how to link the cross points to form a network. Multipath searching makes use of the network and iterative penalty method (IPM) to plan multi-paths, and adjusts the planar paths to satisfy the requirement of maneuverability of unmanned aerial vehicle (UAV). In addition, a new height planning method is proposed to deal with the height planning of 3D route. The proposed algorithm can find multiple paths automatically according to distribution of terrain and threat areas with high efficiency. The height planning can make 3D route following the terrain. The simulation experiment illustrates the feasibility of the proposed method. 展开更多
关键词 path planning skeleton graph iterative penaltymethod (IPM) network graph.
下载PDF
基于多流语义图卷积网络的人体行为识别 被引量:1
4
作者 刘锁兰 王炎 +1 位作者 王洪元 朱生升 《计算机工程》 CAS CSCD 北大核心 2024年第8期64-74,共11页
与基于图像的行为识别方法相比,利用人体骨架信息进行识别能有效克服复杂背景、光照变化以及外貌变化等因素影响。但是,目前主流的基于人体骨架的行为识别方法存在参数量过大、运算速度慢等问题。对此,提出一种多流轻量级语义图卷积的... 与基于图像的行为识别方法相比,利用人体骨架信息进行识别能有效克服复杂背景、光照变化以及外貌变化等因素影响。但是,目前主流的基于人体骨架的行为识别方法存在参数量过大、运算速度慢等问题。对此,提出一种多流轻量级语义图卷积的行为识别方法。设计多流语义引导的图卷积网络(MS-SGN),将骨架信息分别表达为骨长流、关节流和细粒度流3种数据流形式,再对嵌入语义信息的数据流通过自适应图卷积提取空间特征,并采用不同内核和膨胀率的多尺度时域卷积提取时域特征,最后对各流分类结果进行加权融合。实验结果表明,该方法在NTU60 RGB+D数据集上的识别精度分别为90.0%(X-Sub)和95.83%(X-View),在NTU120 RGB+D数据集上的识别精度分别为83.4%(X-Sub)和84.0%(X-View),优于SGN、Logsin-RNN等主流方法,且网络框架更为轻量化。 展开更多
关键词 行为识别 人体骨架 特征融合 图卷积网络 多尺度
下载PDF
联合吸收马尔可夫链和骨架映射的视频分割
5
作者 梁云 张宇晴 +1 位作者 郑晋图 张勇 《软件学报》 EI CSCD 北大核心 2024年第3期1552-1568,共17页
因严重遮挡和剧烈形变等挑战长期共存,精准鲁棒的视频分割已成为计算机视觉的热点之一.构建联合吸收马尔可夫链和骨架映射的视频分割方法,经由“预分割—后优化—再提升”逐步递进地生成精准目标轮廓.在预分割阶段,基于孪生网络和区域... 因严重遮挡和剧烈形变等挑战长期共存,精准鲁棒的视频分割已成为计算机视觉的热点之一.构建联合吸收马尔可夫链和骨架映射的视频分割方法,经由“预分割—后优化—再提升”逐步递进地生成精准目标轮廓.在预分割阶段,基于孪生网络和区域生成网络获取目标感兴趣区域,建立这些区域内超像素的吸收马尔可夫链,计算出超像素的前景/背景标签.吸收马尔可夫链可灵活有效地感知和传播目标特征,能从复杂场景初步预分割出目标物体.后优化阶段,设计短期时空线索模型和长期时空线索模型,以获取目标的短期变化规律和长期稳定特征,进而优化超像素标签,降低相似物体和噪声带来的误差.在再提升阶段,为减少优化结果的边缘毛刺和不连贯,基于超像素标签和位置,提出前景骨架和背景骨架的自动生成算法,并构建基于编解码的骨架映射网络,以学习出像素级目标轮廓,最终得到精准视频分割结果.标准数据集的大量实验表明:所提方法优于现有主流视频分割方法,能够产生具有更高区域相似度和轮廓精准度的分割结果. 展开更多
关键词 视频分割 吸收马尔可夫链 长期/短期时空线索 骨架映射网络
下载PDF
基于改进时空图卷积网络的人员交互行为识别 被引量:1
6
作者 雷静思 刘双广 +1 位作者 刘乔寿 王祥雪 《计算机应用与软件》 北大核心 2024年第4期151-158,共8页
针对人员交互行为识别存在的多模态数据融合方法导致的识别准确率与模型性能无法同时满足的问题,提出一种基于改进时空图卷积网络的人员交互行为识别方法。将单模态骨架数据引入级联的密集时空图卷积块网络中获得丰富的时空特征信息,提... 针对人员交互行为识别存在的多模态数据融合方法导致的识别准确率与模型性能无法同时满足的问题,提出一种基于改进时空图卷积网络的人员交互行为识别方法。将单模态骨架数据引入级联的密集时空图卷积块网络中获得丰富的时空特征信息,提高特征复用率;设计一种增强时空图卷积网络(EST-GCN)单元提高网络对关节点之间的信息表征能力;引入一种运动特征因子衡量肢体不同关节的重要程度,提高模型识别效果。在Kinetics数据集和办案区场景数据集上的实验结果表明,所提出方法在识别效果上具有一定优势,且该方法在模型复杂度及运行效率上具有很好的竞争力。 展开更多
关键词 交互行为 时空图卷积网络 骨架数据 密集
下载PDF
基于人体骨架的扶梯乘客异常行为识别方法
7
作者 杨学存 李杰华 +2 位作者 陈丽媛 季韦 张尚辉 《安全与环境学报》 CAS CSCD 北大核心 2024年第2期636-643,共8页
为准确识别乘客搭乘自动扶梯时的异常行为,避免安全事故的发生,提出了一种基于人体骨架的扶梯乘客异常行为识别方法。首先使用YOLOX-Tiny对视频中乘客位置进行检测,通过Alphapose算法提取骨骼关键点坐标,降低复杂背景的干扰;再使用多流... 为准确识别乘客搭乘自动扶梯时的异常行为,避免安全事故的发生,提出了一种基于人体骨架的扶梯乘客异常行为识别方法。首先使用YOLOX-Tiny对视频中乘客位置进行检测,通过Alphapose算法提取骨骼关键点坐标,降低复杂背景的干扰;再使用多流膨胀3D卷积模块增强时空特征提取能力,聚合乘客骨架的全局特征;然后将其输入改进后的时空图卷积网络中提取乘客骨架信息,通过MS-TCN模块扩大接受域以增强时间特征的提取,联合人体关键点注意力模块(Key Point Attention Module,KPAM)提升网络对相似动作的关键骨架的关注度;最后通过Softmax对异常动作进行分类。采集扶梯运行现场视频制作数据集,试验结果表明,本文算法对乘客异常行为的识别精度达到96.1%,可应用于扶梯现场的视频监控系统,提高安全管理信息化水平。 展开更多
关键词 安全工程 扶梯乘客异常行为 时空图卷积网络 人体骨架信息 行为识别
下载PDF
时空关联的Transformer骨架行为识别 被引量:1
8
作者 卢先领 杨嘉琦 《信号处理》 CSCD 北大核心 2024年第4期766-775,共10页
目前主流的骨架行为识别方法采取关节流、骨骼流及其对应的运动流作为多流网络分别进行训练,造成训练成本高,另外,在特征提取过程中,忽略了对复杂时空依赖关系的建模,以及在时域上的信息交流采取大尺度卷积,导致聚合大量冗余信息。针对... 目前主流的骨架行为识别方法采取关节流、骨骼流及其对应的运动流作为多流网络分别进行训练,造成训练成本高,另外,在特征提取过程中,忽略了对复杂时空依赖关系的建模,以及在时域上的信息交流采取大尺度卷积,导致聚合大量冗余信息。针对以上问题,提出一种时空关联的Transformer骨架行为识别方法。首先,构建运动融合模块,以关节流和骨骼流作为双流输入,在特征级别将各自的运动信息进行融合,减少单独训练运动流的成本;其次,提出移位Transformer模块,利用时间移位操作混合时空信息的特性,配合Transformer低成本地捕获短期时空依赖关系;然后,设计多尺度时间卷积进行时域长期信息交流;最后,融合双流得分获得最终分类预测。在大规模数据集NTU RGB+D以及NTU RGB+D 120上进行实验,结果表明,该模型在NTU RGB+D数据集的两种评价标准X-Sub和X-View上分别达到了91.5%和96.3%的识别准确率,在NTU RGB+D 120数据集两种评价标准X-Sub和X-Set上分别达到了87.2%和89.3%的识别准确率,本文所提方法的识别准确率相对主流骨架行为识别方法有明显提升,验证了模型的有效性和通用性。 展开更多
关键词 Transformer网络 人体骨架 多尺度卷积 运动信息 动作识别
下载PDF
基于图卷积网络的人体骨架行为识别方法综述
9
作者 吕蕾 庞辰 《山东师范大学学报(自然科学版)》 2024年第3期210-232,共23页
基于骨架数据的人体行为识别已成为计算机视觉领域最热门和最重要的研究课题之一。相较于其他数据类型,人体骨架数据不受光照、背景、视角变化的影响,使得该类行为识别方法具有更强的鲁棒性。此外,骨架数据是以拓扑图结构的形式存在,而... 基于骨架数据的人体行为识别已成为计算机视觉领域最热门和最重要的研究课题之一。相较于其他数据类型,人体骨架数据不受光照、背景、视角变化的影响,使得该类行为识别方法具有更强的鲁棒性。此外,骨架数据是以拓扑图结构的形式存在,而图卷积是一种基于图结构的深度学习方法,能够高效地对人体骨架数据的特征进行提取和分类。因此,基于图卷积的方法已经成为处理骨架数据的主流。针对基于图卷积的行为识别方法的前沿性,对其进行全面和系统的总结和分析具有十分重要的意义。本文主要对基于图卷积方法行为识别技术的最新进展进行全面的综述,对相关方法进行分类与总结,并对基准数据集进行详细研究,最后讨论了未来的研究方向和趋势。 展开更多
关键词 骨架数据 图卷积网络 行为识别
下载PDF
基于骨架序列的工序动作识别与分析
10
作者 张智聪 蔡雨辰 张良伟 《工业工程》 2024年第5期73-80,共8页
为了解决工业工程领域传统制造过程中工序动作分析方法存在的耗时耗力与依赖经验的问题,运用动作识别技术替代传统的人工分解动作方法,提出一种基于骨架序列的工序动作智能检测方案。使用2D相机与MediaPipe框架搭建人体姿态估计模型以... 为了解决工业工程领域传统制造过程中工序动作分析方法存在的耗时耗力与依赖经验的问题,运用动作识别技术替代传统的人工分解动作方法,提出一种基于骨架序列的工序动作智能检测方案。使用2D相机与MediaPipe框架搭建人体姿态估计模型以获取骨架序列,引入相关评估指标进行工序动作量化分析。利用骨架数据构建基于卷积门控循环单元CNN-GRU的动作分类模型,面向自建工序动作数据集进行实验验证。结果表明,所提出的CNN-GRU模型在参数量更少的情况下具有更高的准确率,相较于LSTM模型和GRU模型表现更优。在动作识别的基础上,将所得推理结果与标准作业程序进行对比得出异常动作,为工序动作识别与分析提供有效的解决方案,有助于规范生产操作和提升生产效率。 展开更多
关键词 人体姿态估计 骨架序列 卷积门控循环单元(CNN-GRU) 工序动作识别
下载PDF
基于骨骼的人体行为识别方法研究综述
11
作者 黄倩 崔静雯 李畅 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2024年第2期173-194,共22页
人体行为识别在视频理解中发挥了重要作用.近年来,基于骨骼的行为识别方法因其对复杂环境的干扰更具鲁棒性而受到广泛关注.文中共整理了102种基于骨骼的人体行为识别方法,并在9个公开数据集上对其进行了对比分析.按照特征学习方式的不同... 人体行为识别在视频理解中发挥了重要作用.近年来,基于骨骼的行为识别方法因其对复杂环境的干扰更具鲁棒性而受到广泛关注.文中共整理了102种基于骨骼的人体行为识别方法,并在9个公开数据集上对其进行了对比分析.按照特征学习方式的不同,分别介绍了基于手工特征的方法和基于深度学习的方法.其中,基于手工特征的方法按特征描述符的不同分为几何描述符、动力学描述符、统计描述符3个子类;基于深度学习的方法按网络主体的不同分为循环神经网络、卷积神经网络、图卷积网络、Transformer和混合网络5个子类.通过以上分析,不仅阐述了基于骨骼的行为识别方法的发展历程,还剖析了现有方法存在的泛化能力不强、计算成本高等局限.最后,从网络结构设计、相似动作区分、领域数据集拓展、多人交互等方面对未来研究方向进行了展望. 展开更多
关键词 计算机视觉 行为识别 骨骼数据 手工特征 深度学习 神经网络
下载PDF
基于双流骨架信息的人体动作识别方法
12
作者 张艳 肖文琛 张博 《计算机技术与发展》 2024年第1期158-163,共6页
针对当前基于二维图像的人体动作识别算法鲁棒性差、识别率不高等问题,提出了一种融合卷积神经网络和图卷积神经网络的双流人体动作识别算法,从人体骨架信息提取动作的时间与空间特征进行人体动作识别。首先,构建人体骨架信息时空图,利... 针对当前基于二维图像的人体动作识别算法鲁棒性差、识别率不高等问题,提出了一种融合卷积神经网络和图卷积神经网络的双流人体动作识别算法,从人体骨架信息提取动作的时间与空间特征进行人体动作识别。首先,构建人体骨架信息时空图,利用引入注意机制的图卷积网络提取骨架信息的时间和空间特征;其次,构建骨架信息运动图,将卷积神经网络网络提取到骨架运动信息的特征作为时空图卷积网络所提取特征的时间和空间特征的补充;最后,将双流网络进行融合,形成基于双流的、注意力机制的人体动作识别算法。算法增强了骨架信息的表征能力,有效提高了人体动作的识别精度,在NTU-RGB+D60数据集上取得了比较好的结果,Cross-Subject和Cross-View的识别率分别为86.5%和93.5%,相比其他同类算法有一定的提高。 展开更多
关键词 动作识别 骨架信息 注意力机制 图卷积神经网络 双流网络
下载PDF
基于关键裂隙识别的离散裂隙网络骨架提取研究
13
作者 赵伟 张文康 +1 位作者 王涛 王志晓 《中国矿业》 北大核心 2024年第S01期409-413,共5页
离散裂隙网络可以用于模拟煤岩体的力学性能、渗流特性、热传导等多种物理过程,在很多领域都有重要的应用。离散裂隙网络骨架提取的实质是选取网络中较为重要的关键裂隙并将其串联起来。本文提出基于关键裂隙识别的裂隙网络骨架提取方法... 离散裂隙网络可以用于模拟煤岩体的力学性能、渗流特性、热传导等多种物理过程,在很多领域都有重要的应用。离散裂隙网络骨架提取的实质是选取网络中较为重要的关键裂隙并将其串联起来。本文提出基于关键裂隙识别的裂隙网络骨架提取方法,该方法首先进行关键裂隙的识别,在此基础上,构建连通的离散裂隙网络骨架。在关键裂隙识别方面,引入分解次数和分解因子,对传统K-shell算法进行了改进,解决了K-shell算法对不同裂隙重要性的区分度不足的问题,提升了关键裂隙的识别效果。在关键裂隙识别的基础上,提出一种离散裂隙网络骨架提取算法,该算法在不断选取重要裂隙的同时保证裂隙间的连通性,并且考虑了裂隙网络的入面和出面属性。离散裂隙网络数据集上的模拟实验结果表明,本文所提出的算法可以有效地实现离散裂隙网络的骨架提取。 展开更多
关键词 离散裂隙网络 关键裂隙 骨架提取 K-SHELL 连通性
下载PDF
基于跨通道特征增强图卷积网络的骨架行为识别
14
作者 吴志泽 陈盛 +2 位作者 檀明 孙斐 杨静 《模式识别与人工智能》 EI CSCD 北大核心 2024年第8期703-714,共12页
受限于图卷积网络的局部操作模式,传统图卷积网络骨架行为识别方法难以建模远关节点关系和长时间信息,无法捕捉动作间的局部微小变化.因此,文中提出基于跨通道特征增强图卷积网络的骨架行为识别(Cross-Channel Feature-Enhanced Graph C... 受限于图卷积网络的局部操作模式,传统图卷积网络骨架行为识别方法难以建模远关节点关系和长时间信息,无法捕捉动作间的局部微小变化.因此,文中提出基于跨通道特征增强图卷积网络的骨架行为识别(Cross-Channel Feature-Enhanced Graph Convolutional Network for Skeleton-Based Action Recognition,CFE-GCN),包括双部分分组图卷积模块、跨阶段部分密集连接模块及多尺度时间卷积模块.双部分分组图卷积模块采用分组策略,对人体关节点建模,提取多粒度特征,捕获关节点之间的局部细微差异.跨阶段部分密集连接模块建立节点与前网络层之间的关联,丰富早期信息,捕捉长期运动关节间的潜在关系,学习更全面的上下文特征.多尺度时间卷积模块执行不同感受野的时间卷积,捕捉运动在时间域上的短期依赖关系和长期依赖关系.在3个基准数据集上的实验表明CFE-GCN性能较优. 展开更多
关键词 图卷积网络 骨架行为识别 跨通道特征增强 密集连接
下载PDF
基于骨架图与混合注意力的视频行人异常检测方法
15
作者 刘禹含 吉根林 张红苹 《计算机应用》 CSCD 北大核心 2024年第8期2551-2557,共7页
近些年,许多利用人体骨架图检测视频异常的研究在描述人体骨架连接强弱时,只考虑到直接相连的节点,关注的运动区域较小且忽略了局部特征,很难准确检测行人异常事件。为解决以上问题,提出一种基于骨架图与混合注意力的视频行人异常检测方... 近些年,许多利用人体骨架图检测视频异常的研究在描述人体骨架连接强弱时,只考虑到直接相连的节点,关注的运动区域较小且忽略了局部特征,很难准确检测行人异常事件。为解决以上问题,提出一种基于骨架图与混合注意力的视频行人异常检测方法(PAD-SGMA)。首先,扩展骨架点之间的关联,连接根节点与未直接相连的节点,并划分人体骨架图,获取人体骨架局部特征,在图卷积模块中利用静态全局骨架、局部区域骨架和基于注意的邻接矩阵来捕获层次表示;其次,提出新的时空通道混合注意图卷积网络,增加混合注意力模块,关注空间和通道关系,帮助模型增强区分特征且不同程度地关注每个关节。为了验证所提模型,在大规模的公开标准数据集ShanghaiTech Campus上进行实验,结果表明,与GEPC(Graph Embedded Pose Clustering)相比,PAD-SGMA的AUC(Area Under Curve)提高了0.018。 展开更多
关键词 视频异常检测 深度学习 人体骨架 图卷积网络 注意力
下载PDF
时空图卷积网络的骨架识别硬件加速器设计
16
作者 谭会生 严舒琪 杨威 《电子测量技术》 北大核心 2024年第11期36-43,共8页
随着人工智能技术的不断发展,神经网络的数据规模逐渐扩大,神经网络的计算量也迅速攀升。为了减少时空图卷积神经网络的计算量,降低硬件实现的资源消耗,提升人体骨架识别时空图卷积神经网络(ST-GCN)实际应用系统的处理速度,利用现场可... 随着人工智能技术的不断发展,神经网络的数据规模逐渐扩大,神经网络的计算量也迅速攀升。为了减少时空图卷积神经网络的计算量,降低硬件实现的资源消耗,提升人体骨架识别时空图卷积神经网络(ST-GCN)实际应用系统的处理速度,利用现场可编程门阵列(FPGA),设计开发了一个基于时空图卷积神经网络的骨架识别硬件加速器。通过对原网络模型进行结构优化与数据量化,减少了FPGA实现约75%的计算量;利用邻接矩阵稀疏性的特点,提出了一种稀疏性矩阵乘加运算的优化方法,减少了约60%的乘法器资源消耗。经过对人体骨架识别实验验证,结果表明,在时钟频率100 MHz下,相较于CPU,FPGA加速ST-GCN单元,加速比达到30.53;FPGA加速人体骨架识别,加速比达到6.86。 展开更多
关键词 人体骨架识别 时空图卷积神经网络(ST-GCN) 硬件加速器 现场可编程门阵列(FPGA) 稀疏矩阵乘加运算硬件优化
下载PDF
基于骨架特征的瓶颈层多尺度图卷积动作识别方法 被引量:1
17
作者 黄海新 王钰瑶 蔡明启 《计算机科学》 CSCD 北大核心 2024年第S02期344-348,共5页
动作识别方法在计算机视觉领域取得了显著的效果,其中图卷积网络是动作识别任务的一种重要手段,在提取图结构数据的特征中表现出了卓越优势。然而,现有的图卷积动作识别网络仍存在一些问题,如过度依赖预定义骨架拓扑图结构、大时间卷积... 动作识别方法在计算机视觉领域取得了显著的效果,其中图卷积网络是动作识别任务的一种重要手段,在提取图结构数据的特征中表现出了卓越优势。然而,现有的图卷积动作识别网络仍存在一些问题,如过度依赖预定义骨架拓扑图结构、大时间卷积核计算成本高且缺乏灵活性等,这些问题极大限制了模型的表达能力和鲁棒性。文中提出了一种基于骨架数据的自适应瓶颈层多尺度图卷积动作识别方法,自适应空间模块对骨架拓扑图结构和参数进行优化学习,从而增强模型灵活性和适应性;瓶颈层多尺度时序模块提高时间建模能力,通过减少通道宽度来节省计算成本和参数。为验证所提方法的有效性,在大型骨架动作识别数据集NTU-RGB+D和NTU-RGB+D 120上进行实验。结果证明,改进后的算法的准确率得到了一定提升。 展开更多
关键词 动作识别 骨架模态 图卷积网络 视频分类 计算机视觉
下载PDF
基于激光点云数据的室内路网构建方法
18
作者 冯敏 钱程扬 +1 位作者 沈姜威 谢宏全 《科技创新与应用》 2024年第9期25-28,共4页
面对价格昂贵的专业级三维激光扫描仪,针对使用现有二维底图或人工建模可能使得在构建跨楼层路网的过程中出现准确性或效率性低等情况,且考虑如何对室内过道、走廊等区域进行抽象,提出一种基于激光点云数据的室内路网构建方法。该方法... 面对价格昂贵的专业级三维激光扫描仪,针对使用现有二维底图或人工建模可能使得在构建跨楼层路网的过程中出现准确性或效率性低等情况,且考虑如何对室内过道、走廊等区域进行抽象,提出一种基于激光点云数据的室内路网构建方法。该方法以消费级激光雷达扫描设备采集的建筑物内部点云为基础数据,结合直通滤波和投影滤波对点云进行预处理,得到去噪后的平面二维点云,进行栅格二值化处理,针对性填充点云孔洞,抽取骨架线,剔除毛刺并提取骨架线节点,将节点间的拓扑关系存储为邻接表形式的图模型,得到可利用Dijkstra算法寻径并将寻得的最短路径可视化的三维路网模型。 展开更多
关键词 激光点云 路网模型 骨架线 节点 消费级
下载PDF
萧山通城大道快速路总体设计方案
19
作者 蒋相华 《城市道桥与防洪》 2024年第7期31-34,M0006,共5页
随着杭州城市形态逐步转变为开放式空间布局结构,萧山城区作为杭州“三大副城”的江南城,城市快速路系统是整合并重构萧山城区与杭州中心城区的空间关系的重要举措之一。通城大道是杭州市“三纵五横”骨架路网的“一纵”,也是萧山区“... 随着杭州城市形态逐步转变为开放式空间布局结构,萧山城区作为杭州“三大副城”的江南城,城市快速路系统是整合并重构萧山城区与杭州中心城区的空间关系的重要举措之一。通城大道是杭州市“三纵五横”骨架路网的“一纵”,也是萧山区“三纵二横”骨架路网的组成部分。系统介绍了萧山区通城大道快速路总体设计方案,包括道路功能定位和服务对象研究,路线总体走向的论证,建设模式和建设规模的分析,以及最后提出全线的总体布置方案。通过对通城大道快速路总体布置的系统研究,希望其为国内城市快速路前期方案研究提供参考。 展开更多
关键词 萧山 骨架路网 快速路 总体布置
下载PDF
基于3D骨架相似性的自适应移位图卷积神经网络人体行为识别算法 被引量:2
20
作者 闫文杰 尹艺颖 《计算机科学》 CSCD 北大核心 2024年第4期236-242,共7页
图卷积神经网络(Graph Convolutional Neural network,GCN)在基于3D骨架的人体行为识别领域取得了良好效果。然而,现有的大多数GCN方法对行为动作图的构建都是基于人体物理结构的手动设置,训练阶段各个图节点只能根据手动设置建立联系,... 图卷积神经网络(Graph Convolutional Neural network,GCN)在基于3D骨架的人体行为识别领域取得了良好效果。然而,现有的大多数GCN方法对行为动作图的构建都是基于人体物理结构的手动设置,训练阶段各个图节点只能根据手动设置建立联系,无法感知动作行为过程中骨骼节点之间产生的新联系,导致图拓扑结构不合理和不灵活。移位图卷积网络通过改变图网络结构使得感受野更加灵活,并且在全局移位角度取得了良好效果。因此,提出了一种基于自适应移位图卷积神经网络(Adaptive Shift Graph Convolutional Neural network,AS-GCN)的人体行为识别算法来弥补前述GCN方法的不足。AS-GCN借鉴了移位图卷积网络的思想,提出用每个人体动作的本身特点来指导图神经网络进行移位操作,以尽可能准确地选定需要扩大感受野的节点。在基于骨架的通用动作识别数据集NTU-RGBD上,所提算法在骨骼有无物理关系约束的前提条件下均进行了实验验证。与现有的先进算法相比,AS-GCN算法的动作识别准确率在有骨骼物理约束的条件下的CV和CS角度上平均提高了12%和4.84%;在无骨骼物理约束的条件下的CV和CS角度上平均提高了20%和14.49%。 展开更多
关键词 骨架动作分类 图卷积神经网络 行为识别 自适应移位
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部