在目标检测领域中,基于交并比(intersection over union, IoU)的系列损失函数存在一定的局限性,使得边界框回归的精度和稳定性有待进一步提升。为此提出了一种基于非线性高斯平方距离的边界框回归损失函数。首先综合考虑了边界框中重叠...在目标检测领域中,基于交并比(intersection over union, IoU)的系列损失函数存在一定的局限性,使得边界框回归的精度和稳定性有待进一步提升。为此提出了一种基于非线性高斯平方距离的边界框回归损失函数。首先综合考虑了边界框中重叠性、中心点距离和长宽比3个因素,将边界框建模为高斯分布;然后提出一种高斯平方距离来衡量概率分布之间的差距;最后设计了符合优化趋势的非线性函数,将高斯平方距离转化为有利于神经网络学习的损失函数。实验结果表明,与IoU损失相比,所提方法在掩膜区域卷积神经网络、一阶全卷积目标检测器和自适应特征选择目标检测器上的平均精度均值分别提高了0.3%、1.1%和2.3%,证明了该方法能有效提升目标检测的性能,同时有利于高精度边界框的回归。展开更多
文摘在目标检测领域中,基于交并比(intersection over union, IoU)的系列损失函数存在一定的局限性,使得边界框回归的精度和稳定性有待进一步提升。为此提出了一种基于非线性高斯平方距离的边界框回归损失函数。首先综合考虑了边界框中重叠性、中心点距离和长宽比3个因素,将边界框建模为高斯分布;然后提出一种高斯平方距离来衡量概率分布之间的差距;最后设计了符合优化趋势的非线性函数,将高斯平方距离转化为有利于神经网络学习的损失函数。实验结果表明,与IoU损失相比,所提方法在掩膜区域卷积神经网络、一阶全卷积目标检测器和自适应特征选择目标检测器上的平均精度均值分别提高了0.3%、1.1%和2.3%,证明了该方法能有效提升目标检测的性能,同时有利于高精度边界框的回归。
文摘诸如交通网络、供水网络、电信网络、燃气网络等在人们的生活中极其重要,但是这些网络容易受到自然和人为等因素的影响导致失效,进而降低其连通性。为研究其连通性问题,改进SCM(sequential compounding method)实现了考虑点和线可靠性的有向无环网络连通性的计算方法。该算法是一种快速可靠性评价算法,其结果是近似的,适用于分析可分解为点—线—点结构的网络,特别适用于有一定统计规律的网络。算法主要由两种运算组成,即"与"合并和"或"合并,通过这两种运算将网络化简直到合并为一个点为止。计算八种典型的网络,并将结果与文献和MCS(Monte Carlo simulations)比较,结果表明,提出的算法与MCS相比计算得到的连通性略有不同,误差在-6.2%~4.6%;但是计算时间差别很大,大约是MCS的1.2%~9.2%。