With the expansion of network services,large-scale networks have progressively become common.The network status changes rapidly in response to customer needs and configuration changes,so network configuration changes ...With the expansion of network services,large-scale networks have progressively become common.The network status changes rapidly in response to customer needs and configuration changes,so network configuration changes are also very frequent.However,no matter what changes,the network must ensure the correct conditions,such as isolating tenants from each other or guaranteeing essential services.Once changes occur,it is necessary to verify the after-changed network.Whereas,for the verification of large-scale network configuration changes,many current verifiers show poor efficiency.In order to solve the problem ofmultiple global verifications caused by frequent updates of local configurations in large networks,we present a fast configuration updates verification tool,FastCUV,for distributed control planes.FastCUV aims to enhance the efficiency of distributed control plane verification for medium and large networks while ensuring correctness.This paper presents a method to determine the network range affected by the configuration change.We present a flow model and graph structure to facilitate the design of verification algorithms and speed up verification.Our scheme verifies the network area affected by obtaining the change of the Forwarding Information Base(FIB)before and after.FastCUV supports rich network attributes,meanwhile,has high efficiency and correctness performance.After experimental verification and result analysis,our method outperforms the state-of-the-art method to a certain extent.展开更多
In recent years,Deep Learning(DL)technique has been widely used in Internet of Things(IoT)and Industrial Internet of Things(IIoT)for edge computing,and achieved good performances.But more and more studies have shown t...In recent years,Deep Learning(DL)technique has been widely used in Internet of Things(IoT)and Industrial Internet of Things(IIoT)for edge computing,and achieved good performances.But more and more studies have shown the vulnerability of neural networks.So,it is important to test the robustness and vulnerability of neural networks.More specifically,inspired by layer-wise relevance propagation and neural network verification,we propose a novel measurement of sensitive neurons and important neurons,and propose a novel neuron coverage criterion for robustness testing.Based on the novel criterion,we design a novel testing sample generation method,named DeepSI,which involves definitions of sensitive neurons and important neurons.Furthermore,we construct sensitive-decision paths of the neural network through selecting sensitive neurons and important neurons.Finally,we verify our idea by setting up several experiments,then results show our proposed method achieves superior performances.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(2021RC239)the Postdoctoral Science Foundation of China(2021 M690338)+3 种基金theHainan Provincial Natural Science Foundation of China(620RC562,2019RC096,620RC560)the Scientific Research Setup Fund of Hainan University(KYQD(ZR)1877)the Program of Hainan Association for Science and Technology Plans to Youth R&D Innovation(QCXM201910)the National Natural Science Foundation of China(61802092,62162021).
文摘With the expansion of network services,large-scale networks have progressively become common.The network status changes rapidly in response to customer needs and configuration changes,so network configuration changes are also very frequent.However,no matter what changes,the network must ensure the correct conditions,such as isolating tenants from each other or guaranteeing essential services.Once changes occur,it is necessary to verify the after-changed network.Whereas,for the verification of large-scale network configuration changes,many current verifiers show poor efficiency.In order to solve the problem ofmultiple global verifications caused by frequent updates of local configurations in large networks,we present a fast configuration updates verification tool,FastCUV,for distributed control planes.FastCUV aims to enhance the efficiency of distributed control plane verification for medium and large networks while ensuring correctness.This paper presents a method to determine the network range affected by the configuration change.We present a flow model and graph structure to facilitate the design of verification algorithms and speed up verification.Our scheme verifies the network area affected by obtaining the change of the Forwarding Information Base(FIB)before and after.FastCUV supports rich network attributes,meanwhile,has high efficiency and correctness performance.After experimental verification and result analysis,our method outperforms the state-of-the-art method to a certain extent.
基金supported by the National Key R&DProgram of China(No.2021YFF0602104-2)。
文摘In recent years,Deep Learning(DL)technique has been widely used in Internet of Things(IoT)and Industrial Internet of Things(IIoT)for edge computing,and achieved good performances.But more and more studies have shown the vulnerability of neural networks.So,it is important to test the robustness and vulnerability of neural networks.More specifically,inspired by layer-wise relevance propagation and neural network verification,we propose a novel measurement of sensitive neurons and important neurons,and propose a novel neuron coverage criterion for robustness testing.Based on the novel criterion,we design a novel testing sample generation method,named DeepSI,which involves definitions of sensitive neurons and important neurons.Furthermore,we construct sensitive-decision paths of the neural network through selecting sensitive neurons and important neurons.Finally,we verify our idea by setting up several experiments,then results show our proposed method achieves superior performances.