In this article,we comment on the article by Blüthner et al.The article provides a comprehensive analysis of the factors contributing to the late detection of Crohn’s disease and ulcerative colitis within a Germ...In this article,we comment on the article by Blüthner et al.The article provides a comprehensive analysis of the factors contributing to the late detection of Crohn’s disease and ulcerative colitis within a German cohort.It highlights the conse-quences on patient outcomes,particularly disease progression and the increased risk of developing complications.The study identifies specific predictors asso-ciated with both patient-related and physician-related delays,offering a detailed exploration of the initial approach.Additionally,the article delves into the distinct patterns observed in the German population,stressing the unique aspects of diagnostic delays that may differ from those reported in other regions.This detailed examination offers valuable insights into the specific challenges faced within the German healthcare system and underscores the necessity of targeted interventions to facilitate early diagnosis.The importance of improved screening tools,patient education,and better healthcare infrastructure is emphasized as crucial steps toward improving patient care in inflammatory bowel disease.展开更多
Electronic processes within atoms and molecules reside on the timescale of attoseconds. Recent advances in the laserbased pump-probe interrogation techniques have made possible the temporal resolution of ultrafast ele...Electronic processes within atoms and molecules reside on the timescale of attoseconds. Recent advances in the laserbased pump-probe interrogation techniques have made possible the temporal resolution of ultrafast electronic processes on the attosecond timescale, including photoionization and tunneling ionization. These interrogation techniques include the attosecond streak camera, the reconstruction of attosecond beating by interference of two-photon transitions, and the attoclock. While the former two are usually employed to study photoionization processes, the latter is typically used to investigate tunneling ionization. In this review, we briefly overview these timing techniques towards an attosecond temporal resolution of ionization processes in atoms and molecules under intense laser fields. In particular, we review the backpropagation method, which is a novel hybrid quantum-classical approach towards the full characterization of tunneling ionization dynamics. Continued advances in the interrogation techniques promise to pave the pathway towards the exploration of ever faster dynamical processes on an ever shorter timescale.展开更多
In this paper,we consider a 2-degrees-of-freedom(DOF)helicopter system subject to long input delays and uncertain system parameters.To address the challenges including unknown system parameters and input delays in con...In this paper,we consider a 2-degrees-of-freedom(DOF)helicopter system subject to long input delays and uncertain system parameters.To address the challenges including unknown system parameters and input delays in control design,we develop an adaptive predictor-feedback control law to achieve trajectory tracking.Stability of the closed-loop system is further established,where the tracking errors are shown to converge towards zero.Through simulation and experiments on the helicopter system,we illustrate that tracking of a desired trajectory is achieved with the proposed control scheme.展开更多
In the realm of aerial warfare,the protection of Unmanned Aerial Vehicles(UAVs) against adversarial threats is crucial.In order to balance the impact of response delays and the demand for onboard applications,this pap...In the realm of aerial warfare,the protection of Unmanned Aerial Vehicles(UAVs) against adversarial threats is crucial.In order to balance the impact of response delays and the demand for onboard applications,this paper derives three analytical game strategies for the active defense of UAVs from differential game theory,accommodating the first-order dynamic delays.The targeted UAV executes evasive maneuvers and launches a defending missile to intercept the attacking missile,which constitutes a UAVMissile-Defender(UMD) three-body game problem.We explore two distinct operational paradigms:the first involves the UAV and the defender working collaboratively to intercept the incoming threat,while the second prioritizes UAV self-preservation,with independent maneuvering away from potentially sacrificial engagements.Starting with model linearization and order reduction,the Collaborative Interception Strategy(CIS) is first derived via a linear quadratic differential game formulation.Building upon CIS,we further explore two distinct strategies:the Informed Defender Interception Strategy(IDIS),which utilizes UAV maneuvering information,and the Unassisted Defender Interception Strategy(UDIS),which does not rely on UAV maneuvering information.Additionally,we investigate the conditions for the existence of saddle point solutions and their relationship with vehicle maneuverability and response agility.The simulations demonstrate the effectiveness and advantages of the proposed strategies.展开更多
Inflammatory bowel diseases(IBDs),including Crohn's disease(CD)and ulcerative colitis,are chronic inflammatory conditions of the gastrointestinal tract that necessitate timely diagnosis to prevent complications an...Inflammatory bowel diseases(IBDs),including Crohn's disease(CD)and ulcerative colitis,are chronic inflammatory conditions of the gastrointestinal tract that necessitate timely diagnosis to prevent complications and improve patient outcomes.Despite advancements in medical knowledge and diagnostic techniques,significant diagnostic delays persist,particularly in CD.The study by Blüthner et al,published in the World Journal of Gastroenterology,elucidates the diagnostic delays experienced by German patients with IBD and identifies key risk factors contributing to these delays.展开更多
The exponential stability of a class of neural networks with continuously distributed delays is investigated by employing a novel Lyapunov-Krasovskii functional. Through introducing some free-weighting matrices and th...The exponential stability of a class of neural networks with continuously distributed delays is investigated by employing a novel Lyapunov-Krasovskii functional. Through introducing some free-weighting matrices and the equivalent descriptor form, a delay-dependent stability criterion is established for the addressed systems. The condition is expressed in terms of a linear matrix inequality (LMI), and it can be checked by resorting to the LMI in the Matlab toolbox. In addition, the proposed stability criteria do not require the monotonicity of the activation functions and the derivative of a time-varying delay being less than 1, which generalize and improve earlier methods. Finally, numerical examples are given to show the effectiveness of the obtained methods.展开更多
Both the global exponential stability and the existence of periodic solutions for a class of recurrent neural networks with continuously distributed delays (RNNs) are studied. By employing the inequality α∏k=1^m ...Both the global exponential stability and the existence of periodic solutions for a class of recurrent neural networks with continuously distributed delays (RNNs) are studied. By employing the inequality α∏k=1^m bk^qk≤1/r ∑qkbk^r+1/rα^r(α≥0,bk≥0,qk〉0,with ∑k=1^m qk=r-1,r≥1, constructing suitable Lyapunov r k=l k=l functions and applying the homeomorphism theory, a family of simple and new sufficient conditions are given ensuring the global exponential stability and the existence of periodic solutions of RNNs. The results extend and improve the results of earlier publications.展开更多
The random delays in a networked control system (NCS) degrade control performance and can even destabilize the control system.To deal with this problem,the time-stamped predictive functional control (PFC) algorithm is...The random delays in a networked control system (NCS) degrade control performance and can even destabilize the control system.To deal with this problem,the time-stamped predictive functional control (PFC) algorithm is proposed,which generalizes the standard PFC algorithm to networked control systems with random delays.The algorithm uses the time-stamp method to estimate the control delay,predicts the future outputs based on a discrete time delay state space model,and drives the control law that applies to an NCS from the idea of a PFC algorithm.A networked control system was constructed based on TrueTime simulator,with which the time-stamped PFC algorithm was compared with the standard PFC algorithm.The response curves show that the proposed algorithm has better control performance.展开更多
A simulation model was proposed to investigate the relationship between train delays and passenger delays and to predict the dynamic passenger distribution in a large-scale rail transit network. It was assumed that th...A simulation model was proposed to investigate the relationship between train delays and passenger delays and to predict the dynamic passenger distribution in a large-scale rail transit network. It was assumed that the time varying original-destination demand and passenger path choice probability were given. Passengers were assumed not to change their destinations and travel paths after delay occurs. CapaciW constraints of train and queue rules of alighting and boarding were taken into account. By using the time-driven simulation, the states of passengers, trains and other facilities in the network were updated every time step. The proposed methodology was also tested in a real network, for demonstration. The results reveal that short train delay does not necessarily result in passenger delays, while, on the contrary, some passengers may get benefits from the short delay. However, large initial train delay may result in not only knock-on train and passenger delays along the same line, but also the passenger delays across the entire rail transit network.展开更多
Consensus problems of first-order multi-agent systems with multiple time delays are investigated in this paper. We discuss three cases: 1) continuous, 2) discrete, and 3) a continuous system with a proportional pl...Consensus problems of first-order multi-agent systems with multiple time delays are investigated in this paper. We discuss three cases: 1) continuous, 2) discrete, and 3) a continuous system with a proportional plus derivative controller. In each case, the system contains simultaneous communication and input time delays. Supposing a dynamic multi-agent system with directed topology that contains a globally reachable node, the sufficient convergence condition of the system is discussed with respect to each of the three cases based on the generalized Nyquist criterion and the frequency-domain analysis approach, yielding conclusions that are either less conservative than or agree with previously published results. We know that the convergence condition of the system depends mainly on each agent’s input time delay and the adjacent weights but is independent of the communication delay between agents, whether the system is continuous or discrete. Finally, simulation examples are given to verify the theoretical analysis.展开更多
A three-species ratio-dependent predator-prey diffusion model with time delays is investigated. It is shown that the system is uniformly persistent under some appropriate conditions, and sufficient conditions axe obta...A three-species ratio-dependent predator-prey diffusion model with time delays is investigated. It is shown that the system is uniformly persistent under some appropriate conditions, and sufficient conditions axe obtained for the global stability of the positive equilibrium of the system.展开更多
In networked control systems (NCS), the main problem is time delays induced by communication network, which can deteriorate the performance of the systems, even cause the systems instability. If we know the exact netw...In networked control systems (NCS), the main problem is time delays induced by communication network, which can deteriorate the performance of the systems, even cause the systems instability. If we know the exact network delays, we can compensate for their effect by modifying the parameters of the controller. Hence how to get the knowledge of these delays in the network is critical. This paper analyzed the different characteristics of network delays from sensor to controller and from controller to actuator and presented the methods of online evaluation of these delays. The experiment shows these methods are valid.展开更多
In complex environments, many distributed multiagent systems are described with the fractional-order dynamics.In this paper, containment control of fractional-order multiagent systems with multiple leader agents are s...In complex environments, many distributed multiagent systems are described with the fractional-order dynamics.In this paper, containment control of fractional-order multiagent systems with multiple leader agents are studied. Firstly,the collaborative control of fractional-order multi-agent systems(FOMAS) with multiple leaders is analyzed in a directed network without delays. Then, by using Laplace transform and frequency domain theorem, containment consensus of networked FOMAS with time delays is investigated in an undirected network, and a critical value of delays is obtained to ensure the containment consensus of FOMAS. Finally, numerical simulations are shown to verify the results.展开更多
In this article, an SIRS epidemic model spread by vectors (mosquitoes) which have an incubation time to become infectious is formulated. It is shown that a disease-free equilibrium point is globally stable if no end...In this article, an SIRS epidemic model spread by vectors (mosquitoes) which have an incubation time to become infectious is formulated. It is shown that a disease-free equilibrium point is globally stable if no endemic equilibrium point exists. Further, the endemic equilibrium point (if it exists) is globally stable with a respect "weak delay". Some known results are generalized.展开更多
Guaranteed cost consensus analysis and design problems for high-dimensional multi-agent systems with time varying delays are investigated. The idea of guaranteed cost con trol is introduced into consensus problems for...Guaranteed cost consensus analysis and design problems for high-dimensional multi-agent systems with time varying delays are investigated. The idea of guaranteed cost con trol is introduced into consensus problems for high-dimensiona multi-agent systems with time-varying delays, where a cos function is defined based on state errors among neighboring agents and control inputs of all the agents. By the state space decomposition approach and the linear matrix inequality(LMI)sufficient conditions for guaranteed cost consensus and consensu alization are given. Moreover, a guaranteed cost upper bound o the cost function is determined. It should be mentioned that these LMI criteria are dependent on the change rate of time delays and the maximum time delay, the guaranteed cost upper bound is only dependent on the maximum time delay but independen of the Laplacian matrix. Finally, numerical simulations are given to demonstrate theoretical results.展开更多
A whole impulsive control scheme of nonlinear systems with time-varying delays, which is an extension for impulsive control of nonlinear systems without time delay, is presented in this paper. Utilizing the Lyapunov f...A whole impulsive control scheme of nonlinear systems with time-varying delays, which is an extension for impulsive control of nonlinear systems without time delay, is presented in this paper. Utilizing the Lyapunov functions and the impulsive-type comparison principles, we establish a series of different conditions under which impulsively controlled nonlinear systems with time-varying delays are asymptotically stable. Then we estimate upper bounds of impulse interval and time-varying delays for asymptotically stable control. Finally a numerical example is given to illustrate the effectiveness of the method.展开更多
A new method in which the consensus algorithm is used to solve the coordinate control problems of leaderless multiple autonomous underwater vehicles(multi-AUVs) with double independent Markovian switching communicat...A new method in which the consensus algorithm is used to solve the coordinate control problems of leaderless multiple autonomous underwater vehicles(multi-AUVs) with double independent Markovian switching communication topologies and time-varying delays among the underwater sensors is investigated.This is accomplished by first dividing the communication topology into two different switching parts,i.e.,velocity and position,to reduce the data capacity per data package sent between the multi-AUVs in the ocean.Then,the state feedback linearization is used to simplify and rewrite the complex nonlinear and coupled mathematical model of the AUVs into a double-integrator dynamic model.Consequently,coordinate control of the multi-AUVs is regarded as an approximating consensus problem with various time-varying delays and velocity and position topologies.Considering these factors,sufficient conditions of consensus control are proposed and analyzed and the stability of the multi-AUVs is proven by Lyapunov-Krasovskii theorem.Finally,simulation results that validate the theoretical results are presented.展开更多
A delayed n-species nonautonomous Lotka-Volterra type competitive system without dominating instantaneous negative feedback is investigated. By means of a suitable Lyapunov functional, sufficient conditions are derive...A delayed n-species nonautonomous Lotka-Volterra type competitive system without dominating instantaneous negative feedback is investigated. By means of a suitable Lyapunov functional, sufficient conditions are derived for the global asymptotic stability of the positive solutions of the system. As a corollary, it is shown that the global asymptotic stability of the positive solution is maintained provided that the delayed negative feedbacks dominate other interspecific interaction effects with delays and the delays are sufficiently small.展开更多
This paper studies the consensus problems for a group of agents with switching topology and time-varying communication delays, where the dynamics of agents is modeled as a high-order integrator. A linear distributed c...This paper studies the consensus problems for a group of agents with switching topology and time-varying communication delays, where the dynamics of agents is modeled as a high-order integrator. A linear distributed consensus protocol is proposed, which only depends on the agent's own information and its neighbors' partial information. By introducing a decomposition of the state vector and performing a state space transformation, the closed-loop dynamics of the multi-agent system is converted into two decoupled subsystems. Based on the decoupled subsystems, some sufficient conditions for the convergence to consensus are established, which provide the upper bounds on the admissible communication delays. Also, the explicit expression of the consensus state is derived. Moreover, the results on the consensus seeking of the group of high-order agents have been extended to a network of agents with dynamics modeled as a completely controllable linear time-invariant system. It is proved that the convergence to consensus of this network is equivalent to that of the group of high-order agents. Finally, some numerical examples are given to demonstrate the effectiveness of the main results.展开更多
文摘In this article,we comment on the article by Blüthner et al.The article provides a comprehensive analysis of the factors contributing to the late detection of Crohn’s disease and ulcerative colitis within a German cohort.It highlights the conse-quences on patient outcomes,particularly disease progression and the increased risk of developing complications.The study identifies specific predictors asso-ciated with both patient-related and physician-related delays,offering a detailed exploration of the initial approach.Additionally,the article delves into the distinct patterns observed in the German population,stressing the unique aspects of diagnostic delays that may differ from those reported in other regions.This detailed examination offers valuable insights into the specific challenges faced within the German healthcare system and underscores the necessity of targeted interventions to facilitate early diagnosis.The importance of improved screening tools,patient education,and better healthcare infrastructure is emphasized as crucial steps toward improving patient care in inflammatory bowel disease.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.92150105,11834004,12227807,and 12241407)the Science and Technology Commission of Shanghai Municipality (Grant No.21ZR1420100)。
文摘Electronic processes within atoms and molecules reside on the timescale of attoseconds. Recent advances in the laserbased pump-probe interrogation techniques have made possible the temporal resolution of ultrafast electronic processes on the attosecond timescale, including photoionization and tunneling ionization. These interrogation techniques include the attosecond streak camera, the reconstruction of attosecond beating by interference of two-photon transitions, and the attoclock. While the former two are usually employed to study photoionization processes, the latter is typically used to investigate tunneling ionization. In this review, we briefly overview these timing techniques towards an attosecond temporal resolution of ionization processes in atoms and molecules under intense laser fields. In particular, we review the backpropagation method, which is a novel hybrid quantum-classical approach towards the full characterization of tunneling ionization dynamics. Continued advances in the interrogation techniques promise to pave the pathway towards the exploration of ever faster dynamical processes on an ever shorter timescale.
基金partially supported by the DEEPCOBOT project under Grant 306640/O70 funded by the Research Council of Norway.
文摘In this paper,we consider a 2-degrees-of-freedom(DOF)helicopter system subject to long input delays and uncertain system parameters.To address the challenges including unknown system parameters and input delays in control design,we develop an adaptive predictor-feedback control law to achieve trajectory tracking.Stability of the closed-loop system is further established,where the tracking errors are shown to converge towards zero.Through simulation and experiments on the helicopter system,we illustrate that tracking of a desired trajectory is achieved with the proposed control scheme.
基金supported by the China Postdoctoral Science Foundation (Grant No.2021M700321)the Fundamental Research Funds for the Central Universities (Grant No.YWF-23-Q1041)。
文摘In the realm of aerial warfare,the protection of Unmanned Aerial Vehicles(UAVs) against adversarial threats is crucial.In order to balance the impact of response delays and the demand for onboard applications,this paper derives three analytical game strategies for the active defense of UAVs from differential game theory,accommodating the first-order dynamic delays.The targeted UAV executes evasive maneuvers and launches a defending missile to intercept the attacking missile,which constitutes a UAVMissile-Defender(UMD) three-body game problem.We explore two distinct operational paradigms:the first involves the UAV and the defender working collaboratively to intercept the incoming threat,while the second prioritizes UAV self-preservation,with independent maneuvering away from potentially sacrificial engagements.Starting with model linearization and order reduction,the Collaborative Interception Strategy(CIS) is first derived via a linear quadratic differential game formulation.Building upon CIS,we further explore two distinct strategies:the Informed Defender Interception Strategy(IDIS),which utilizes UAV maneuvering information,and the Unassisted Defender Interception Strategy(UDIS),which does not rely on UAV maneuvering information.Additionally,we investigate the conditions for the existence of saddle point solutions and their relationship with vehicle maneuverability and response agility.The simulations demonstrate the effectiveness and advantages of the proposed strategies.
文摘Inflammatory bowel diseases(IBDs),including Crohn's disease(CD)and ulcerative colitis,are chronic inflammatory conditions of the gastrointestinal tract that necessitate timely diagnosis to prevent complications and improve patient outcomes.Despite advancements in medical knowledge and diagnostic techniques,significant diagnostic delays persist,particularly in CD.The study by Blüthner et al,published in the World Journal of Gastroenterology,elucidates the diagnostic delays experienced by German patients with IBD and identifies key risk factors contributing to these delays.
基金The National Natural Science Foundation of China (No60574006)
文摘The exponential stability of a class of neural networks with continuously distributed delays is investigated by employing a novel Lyapunov-Krasovskii functional. Through introducing some free-weighting matrices and the equivalent descriptor form, a delay-dependent stability criterion is established for the addressed systems. The condition is expressed in terms of a linear matrix inequality (LMI), and it can be checked by resorting to the LMI in the Matlab toolbox. In addition, the proposed stability criteria do not require the monotonicity of the activation functions and the derivative of a time-varying delay being less than 1, which generalize and improve earlier methods. Finally, numerical examples are given to show the effectiveness of the obtained methods.
文摘Both the global exponential stability and the existence of periodic solutions for a class of recurrent neural networks with continuously distributed delays (RNNs) are studied. By employing the inequality α∏k=1^m bk^qk≤1/r ∑qkbk^r+1/rα^r(α≥0,bk≥0,qk〉0,with ∑k=1^m qk=r-1,r≥1, constructing suitable Lyapunov r k=l k=l functions and applying the homeomorphism theory, a family of simple and new sufficient conditions are given ensuring the global exponential stability and the existence of periodic solutions of RNNs. The results extend and improve the results of earlier publications.
文摘The random delays in a networked control system (NCS) degrade control performance and can even destabilize the control system.To deal with this problem,the time-stamped predictive functional control (PFC) algorithm is proposed,which generalizes the standard PFC algorithm to networked control systems with random delays.The algorithm uses the time-stamp method to estimate the control delay,predicts the future outputs based on a discrete time delay state space model,and drives the control law that applies to an NCS from the idea of a PFC algorithm.A networked control system was constructed based on TrueTime simulator,with which the time-stamped PFC algorithm was compared with the standard PFC algorithm.The response curves show that the proposed algorithm has better control performance.
基金Project(51008229)supported by the National Natural Science Foundation of ChinaProject supported by Key Laboratory of Road and Traffic Engineering of Tongji University,China
文摘A simulation model was proposed to investigate the relationship between train delays and passenger delays and to predict the dynamic passenger distribution in a large-scale rail transit network. It was assumed that the time varying original-destination demand and passenger path choice probability were given. Passengers were assumed not to change their destinations and travel paths after delay occurs. CapaciW constraints of train and queue rules of alighting and boarding were taken into account. By using the time-driven simulation, the states of passengers, trains and other facilities in the network were updated every time step. The proposed methodology was also tested in a real network, for demonstration. The results reveal that short train delay does not necessarily result in passenger delays, while, on the contrary, some passengers may get benefits from the short delay. However, large initial train delay may result in not only knock-on train and passenger delays along the same line, but also the passenger delays across the entire rail transit network.
基金Project supported in part by the National Natural Science Foundation of China (Grant Nos. 60973114 and 61170249)in part by the Natural Science Foundation of CQCSTC (Grant Nos. 2009BA2024 and cstc2011jjA1320)in part by the State Key Laboratory of Power Transmission Equipment & System Securityand New Technology, Chongqing University (Grant No. 2007DA10512711206)
文摘Consensus problems of first-order multi-agent systems with multiple time delays are investigated in this paper. We discuss three cases: 1) continuous, 2) discrete, and 3) a continuous system with a proportional plus derivative controller. In each case, the system contains simultaneous communication and input time delays. Supposing a dynamic multi-agent system with directed topology that contains a globally reachable node, the sufficient convergence condition of the system is discussed with respect to each of the three cases based on the generalized Nyquist criterion and the frequency-domain analysis approach, yielding conclusions that are either less conservative than or agree with previously published results. We know that the convergence condition of the system depends mainly on each agent’s input time delay and the adjacent weights but is independent of the communication delay between agents, whether the system is continuous or discrete. Finally, simulation examples are given to verify the theoretical analysis.
文摘A three-species ratio-dependent predator-prey diffusion model with time delays is investigated. It is shown that the system is uniformly persistent under some appropriate conditions, and sufficient conditions axe obtained for the global stability of the positive equilibrium of the system.
文摘In networked control systems (NCS), the main problem is time delays induced by communication network, which can deteriorate the performance of the systems, even cause the systems instability. If we know the exact network delays, we can compensate for their effect by modifying the parameters of the controller. Hence how to get the knowledge of these delays in the network is critical. This paper analyzed the different characteristics of network delays from sensor to controller and from controller to actuator and presented the methods of online evaluation of these delays. The experiment shows these methods are valid.
基金supported by the National Natural Science Foundation of China(61273200,61273152,61202111,61304052,51407088)the Science Foundation of Education Office of Shandong Province of China(ZR2011FM07,BS2015DX018)
文摘In complex environments, many distributed multiagent systems are described with the fractional-order dynamics.In this paper, containment control of fractional-order multiagent systems with multiple leader agents are studied. Firstly,the collaborative control of fractional-order multi-agent systems(FOMAS) with multiple leaders is analyzed in a directed network without delays. Then, by using Laplace transform and frequency domain theorem, containment consensus of networked FOMAS with time delays is investigated in an undirected network, and a critical value of delays is obtained to ensure the containment consensus of FOMAS. Finally, numerical simulations are shown to verify the results.
基金This work is supported by the National Sciences Foundation of China (10471040)the Youth Science Foundations of Shanxi Province (20021003).
文摘In this article, an SIRS epidemic model spread by vectors (mosquitoes) which have an incubation time to become infectious is formulated. It is shown that a disease-free equilibrium point is globally stable if no endemic equilibrium point exists. Further, the endemic equilibrium point (if it exists) is globally stable with a respect "weak delay". Some known results are generalized.
基金supported by Shaanxi Province Natural Science Foundation of Research Projects(2016JM6014)the Innovation Foundation of High-Tech Institute of Xi’an(2015ZZDJJ03)the Youth Foundation of HighTech Institute of Xi’an(2016QNJJ004)
文摘Guaranteed cost consensus analysis and design problems for high-dimensional multi-agent systems with time varying delays are investigated. The idea of guaranteed cost con trol is introduced into consensus problems for high-dimensiona multi-agent systems with time-varying delays, where a cos function is defined based on state errors among neighboring agents and control inputs of all the agents. By the state space decomposition approach and the linear matrix inequality(LMI)sufficient conditions for guaranteed cost consensus and consensu alization are given. Moreover, a guaranteed cost upper bound o the cost function is determined. It should be mentioned that these LMI criteria are dependent on the change rate of time delays and the maximum time delay, the guaranteed cost upper bound is only dependent on the maximum time delay but independen of the Laplacian matrix. Finally, numerical simulations are given to demonstrate theoretical results.
文摘A whole impulsive control scheme of nonlinear systems with time-varying delays, which is an extension for impulsive control of nonlinear systems without time delay, is presented in this paper. Utilizing the Lyapunov functions and the impulsive-type comparison principles, we establish a series of different conditions under which impulsively controlled nonlinear systems with time-varying delays are asymptotically stable. Then we estimate upper bounds of impulse interval and time-varying delays for asymptotically stable control. Finally a numerical example is given to illustrate the effectiveness of the method.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51679057,51309067,and 51609048)the Outstanding Youth Science Foundation of Heilongjiang Providence of China(Grant No.JC2016007)the Natural Science Foundation of Heilongjiang Province,China(Grant No.E2016020)
文摘A new method in which the consensus algorithm is used to solve the coordinate control problems of leaderless multiple autonomous underwater vehicles(multi-AUVs) with double independent Markovian switching communication topologies and time-varying delays among the underwater sensors is investigated.This is accomplished by first dividing the communication topology into two different switching parts,i.e.,velocity and position,to reduce the data capacity per data package sent between the multi-AUVs in the ocean.Then,the state feedback linearization is used to simplify and rewrite the complex nonlinear and coupled mathematical model of the AUVs into a double-integrator dynamic model.Consequently,coordinate control of the multi-AUVs is regarded as an approximating consensus problem with various time-varying delays and velocity and position topologies.Considering these factors,sufficient conditions of consensus control are proposed and analyzed and the stability of the multi-AUVs is proven by Lyapunov-Krasovskii theorem.Finally,simulation results that validate the theoretical results are presented.
文摘A delayed n-species nonautonomous Lotka-Volterra type competitive system without dominating instantaneous negative feedback is investigated. By means of a suitable Lyapunov functional, sufficient conditions are derived for the global asymptotic stability of the positive solutions of the system. As a corollary, it is shown that the global asymptotic stability of the positive solution is maintained provided that the delayed negative feedbacks dominate other interspecific interaction effects with delays and the delays are sufficiently small.
基金supported by the National Natural Science Foundation of China(No.60674050,60736022,10972002,60774089,60704039)
文摘This paper studies the consensus problems for a group of agents with switching topology and time-varying communication delays, where the dynamics of agents is modeled as a high-order integrator. A linear distributed consensus protocol is proposed, which only depends on the agent's own information and its neighbors' partial information. By introducing a decomposition of the state vector and performing a state space transformation, the closed-loop dynamics of the multi-agent system is converted into two decoupled subsystems. Based on the decoupled subsystems, some sufficient conditions for the convergence to consensus are established, which provide the upper bounds on the admissible communication delays. Also, the explicit expression of the consensus state is derived. Moreover, the results on the consensus seeking of the group of high-order agents have been extended to a network of agents with dynamics modeled as a completely controllable linear time-invariant system. It is proved that the convergence to consensus of this network is equivalent to that of the group of high-order agents. Finally, some numerical examples are given to demonstrate the effectiveness of the main results.