Virtual reality (VR) is a rapidly developing technology that has a wide spectrum of industrial and commercial applications. Networked (distributed or shared) virtual environments (VE) are of growing interest to modern...Virtual reality (VR) is a rapidly developing technology that has a wide spectrum of industrial and commercial applications. Networked (distributed or shared) virtual environments (VE) are of growing interest to modern manufacturing industry; a dominating use of networked virtual manufacturing environments (VMEs) is on-line visualisation and collaborative control of 3D information. This has to be supported by real-time data transfer. To meet a broad range of common requirements for Internet-based VE communications, particularly for virtual manufacturing and collaborative design and control, this paper presents a networked virtual environment system that is designed to support networked virtual design and manufacturing. The system is implemented with manufacturing message specification (MMS) standards so as to integrate a range of manufacturing services into networked VEs over the Internet.展开更多
The freshness of fruits is considered to be one of the essential characteristics for consumers in determining their quality,flavor and nutritional value.The primary need for identifying rotten fruits is to ensure that...The freshness of fruits is considered to be one of the essential characteristics for consumers in determining their quality,flavor and nutritional value.The primary need for identifying rotten fruits is to ensure that only fresh and high-quality fruits are sold to consumers.The impact of rotten fruits can foster harmful bacteria,molds and other microorganisms that can cause food poisoning and other illnesses to the consumers.The overall purpose of the study is to classify rotten fruits,which can affect the taste,texture,and appearance of other fresh fruits,thereby reducing their shelf life.The agriculture and food industries are increasingly adopting computer vision technology to detect rotten fruits and forecast their shelf life.Hence,this research work mainly focuses on the Convolutional Neural Network’s(CNN)deep learning model,which helps in the classification of rotten fruits.The proposed methodology involves real-time analysis of a dataset of various types of fruits,including apples,bananas,oranges,papayas and guavas.Similarly,machine learningmodels such as GaussianNaïve Bayes(GNB)and random forest are used to predict the fruit’s shelf life.The results obtained from the various pre-trained models for rotten fruit detection are analysed based on an accuracy score to determine the best model.In comparison to other pre-trained models,the visual geometry group16(VGG16)obtained a higher accuracy score of 95%.Likewise,the random forest model delivers a better accuracy score of 88% when compared with GNB in forecasting the fruit’s shelf life.By developing an accurate classification model,only fresh and safe fruits reach consumers,reducing the risks associated with contaminated produce.Thereby,the proposed approach will have a significant impact on the food industry for efficient fruit distribution and also benefit customers to purchase fresh fruits.展开更多
提出了一种新的嵌入高斯混合模型(GMM,Gaussian Mixture Model)遥感影像朴素贝叶斯网络模型GMM-NBC(GMMbased Na ve Bayesian Classifier)。针对连续型朴素贝叶斯网络分类器中假设地物服从单一高斯分布的缺点,该方法将地物在特征空间的...提出了一种新的嵌入高斯混合模型(GMM,Gaussian Mixture Model)遥感影像朴素贝叶斯网络模型GMM-NBC(GMMbased Na ve Bayesian Classifier)。针对连续型朴素贝叶斯网络分类器中假设地物服从单一高斯分布的缺点,该方法将地物在特征空间的分布用高斯混合模型来模拟,用改进EM算法自动获取高斯混合模型的参数;高斯混合模型整体作为一个子节点嵌入朴素贝叶斯网络中,将其输出作为节点(特征)的中间类后验概率,在朴素贝叶斯网络的框架下进行融合获得最终的类后验概率。对多光谱和高光谱数据的分类实验结果表明,该方法较传统贝叶斯分类器分类效果要好,且有较强的鲁棒性。展开更多
文摘Virtual reality (VR) is a rapidly developing technology that has a wide spectrum of industrial and commercial applications. Networked (distributed or shared) virtual environments (VE) are of growing interest to modern manufacturing industry; a dominating use of networked virtual manufacturing environments (VMEs) is on-line visualisation and collaborative control of 3D information. This has to be supported by real-time data transfer. To meet a broad range of common requirements for Internet-based VE communications, particularly for virtual manufacturing and collaborative design and control, this paper presents a networked virtual environment system that is designed to support networked virtual design and manufacturing. The system is implemented with manufacturing message specification (MMS) standards so as to integrate a range of manufacturing services into networked VEs over the Internet.
文摘The freshness of fruits is considered to be one of the essential characteristics for consumers in determining their quality,flavor and nutritional value.The primary need for identifying rotten fruits is to ensure that only fresh and high-quality fruits are sold to consumers.The impact of rotten fruits can foster harmful bacteria,molds and other microorganisms that can cause food poisoning and other illnesses to the consumers.The overall purpose of the study is to classify rotten fruits,which can affect the taste,texture,and appearance of other fresh fruits,thereby reducing their shelf life.The agriculture and food industries are increasingly adopting computer vision technology to detect rotten fruits and forecast their shelf life.Hence,this research work mainly focuses on the Convolutional Neural Network’s(CNN)deep learning model,which helps in the classification of rotten fruits.The proposed methodology involves real-time analysis of a dataset of various types of fruits,including apples,bananas,oranges,papayas and guavas.Similarly,machine learningmodels such as GaussianNaïve Bayes(GNB)and random forest are used to predict the fruit’s shelf life.The results obtained from the various pre-trained models for rotten fruit detection are analysed based on an accuracy score to determine the best model.In comparison to other pre-trained models,the visual geometry group16(VGG16)obtained a higher accuracy score of 95%.Likewise,the random forest model delivers a better accuracy score of 88% when compared with GNB in forecasting the fruit’s shelf life.By developing an accurate classification model,only fresh and safe fruits reach consumers,reducing the risks associated with contaminated produce.Thereby,the proposed approach will have a significant impact on the food industry for efficient fruit distribution and also benefit customers to purchase fresh fruits.
文摘提出了一种新的嵌入高斯混合模型(GMM,Gaussian Mixture Model)遥感影像朴素贝叶斯网络模型GMM-NBC(GMMbased Na ve Bayesian Classifier)。针对连续型朴素贝叶斯网络分类器中假设地物服从单一高斯分布的缺点,该方法将地物在特征空间的分布用高斯混合模型来模拟,用改进EM算法自动获取高斯混合模型的参数;高斯混合模型整体作为一个子节点嵌入朴素贝叶斯网络中,将其输出作为节点(特征)的中间类后验概率,在朴素贝叶斯网络的框架下进行融合获得最终的类后验概率。对多光谱和高光谱数据的分类实验结果表明,该方法较传统贝叶斯分类器分类效果要好,且有较强的鲁棒性。