Identifying critical nodes or sets in large-scale networks is a fundamental scientific problem and one of the key research directions in the fields of data mining and network science when implementing network attacks,...Identifying critical nodes or sets in large-scale networks is a fundamental scientific problem and one of the key research directions in the fields of data mining and network science when implementing network attacks, defense, repair and control.Traditional methods usually begin from the centrality, node location or the impact on the largest connected component after node destruction, mainly based on the network structure.However, these algorithms do not consider network state changes.We applied a model that combines a random connectivity matrix and minimal low-dimensional structures to represent network connectivity.By using mean field theory and information entropy to calculate node activity,we calculated the overlap between the random parts and fixed low-dimensional parts to quantify the influence of node impact on network state changes and ranked them by importance.We applied this algorithm and the proposed importance algorithm to the overall analysis and stratified analysis of the C.elegans neural network.We observed a change in the critical entropy of the network state and by utilizing the proposed method we can calculate the nodes that indirectly affect muscle cells through neural layers.展开更多
Complex networked systems,which range from biological systems in the natural world to infrastructure systems in the human-made world,can exhibit spontaneous recovery after a failure;for example,a brain may spontaneous...Complex networked systems,which range from biological systems in the natural world to infrastructure systems in the human-made world,can exhibit spontaneous recovery after a failure;for example,a brain may spontaneously return to normal after a seizure,and traffic flow can become smooth again after a jam.Previous studies on the spontaneous recovery of dynamical networks have been limited to undirected networks.However,most real-world networks are directed.To fill this gap,we build a model in which nodes may alternately fail and recover,and we develop a theoretical tool to analyze the recovery properties of directed dynamical networks.We find that the tool can accurately predict the final fraction of active nodes,and the prediction accuracy decreases as the fraction of bidirectional links in the network increases,which emphasizes the importance of directionality in network dynamics.Due to different initial states,directed dynamical networks may show alternative stable states under the same control parameter,exhibiting hysteresis behavior.In addition,for networks with finite sizes,the fraction of active nodes may jump back and forth between high and low states,mimicking repetitive failure-recovery processes.These findings could help clarify the system recovery mechanism and enable better design of networked systems with high resilience.展开更多
In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation ...In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation of target state variables in multi-layer complex dynamical networks with nonlinear node dynamics is studied.A suitable functional state observer is constructed with the limited measurement.The parameters of the designed functional observer are obtained from the algebraic method and the stability of the functional observer is proven by the Lyapunov theorem.Some necessary conditions that need to be satisfied for the design of the functional state observer are obtained.Different from previous studies, in the multi-layer complex dynamical network with nonlinear node dynamics, the proposed method can estimate the state of target variables on some layers directly instead of estimating all the individual states.Thus, it can greatly reduce the placement of observers and computational cost.Numerical simulations with the three-layer complex dynamical network composed of three-dimensional nonlinear dynamical nodes are developed to verify the effectiveness of the method.展开更多
This paper proposes second-order consensus protocols with time-delays and gives the measure of the robustness of the protocols to the time-delay existing in the network of agents with second-order dynamics. By employi...This paper proposes second-order consensus protocols with time-delays and gives the measure of the robustness of the protocols to the time-delay existing in the network of agents with second-order dynamics. By employing a frequency domain method, it is proven that the information states and their time derivatives of all the agents in the network achieve consensus asymptotically, respectively, for appropriate communication timedelay if the topology of weighted network is connected. Particularly, a tight upper bound on the communication time-delay that can be tolerated in the dynamic network is found. The consensus protocols are distributed in the sense that each agent only needs information from its neighboring agents, which reduces the complexity of connections between neighboring agents significantly. Numerical simulation results are provided to demonstrate the effectiveness and the sharpness of the theoretical results for second-order consensus in networks in the presence of communication time-delays.展开更多
A problem of topology identification for complex dynamical networks is investigated in this paper. An adaptive observer is proposed to identify the topology of a complex dynamical networks based on the Lyapunov stabil...A problem of topology identification for complex dynamical networks is investigated in this paper. An adaptive observer is proposed to identify the topology of a complex dynamical networks based on the Lyapunov stability theory. Here the output of the network and the states of the observer are used to construct the updating law of the topology such that the communication resources from the network to its observer are saved. Some convergent criteria of the adaptive observer are derived in the form of linear inequality matrices. Several numerical examples are shown to demonstrate the effectiveness of the proposed observer.展开更多
In this article, a synchronization problem for master-slave Markovian switching complex dynamical networks with time-varying delays in nonlinear function via sliding mode control is investigated. On the basis of the a...In this article, a synchronization problem for master-slave Markovian switching complex dynamical networks with time-varying delays in nonlinear function via sliding mode control is investigated. On the basis of the appropriate Lyapunov-Krasovskii functional, introducing some free weighting matrices, new synchronization criteria are derived in terms of linear matrix inequalities (LMIs). Then, an integral sliding surface is designed to guarantee synchronization of master-slave Markovian switching complex dynamical networks, and the suitable controller is synthesized to ensure that the trajectory of the closed-loop error system can be driven onto the prescribed sliding mode surface. By using Dynkin's formula, we established the stochastic stablity of master-slave system. Finally, numerical example is provided to demonstrate the effectiveness of the obtained theoretical results.展开更多
This paper studies local exponential synchronization of complex delayed networks with switching topology via switched system stability theory. First, by a common unitary matrix, the problem of synchronization is trans...This paper studies local exponential synchronization of complex delayed networks with switching topology via switched system stability theory. First, by a common unitary matrix, the problem of synchronization is transformed into the stability analysis of some linear switched delay systems. Then, when all subnetworks are synchronizable, a delay-dependent sufficient condition is given in terms of linear matrix inequalities (LMIs) which guarantees the solvability of the synchronization problem under an average dwell time scheme. We extend this result to the case that not all subnetworks are synchronizable. It is shown that in addition to average dwell time, if the ratio of the total activation time of synchronizable and non-synchronizable subnetworks satisfy an extra condition, then the problem is also solvable. Two numerical examples of delayed dynamical networks with switching topology are given, which demonstrate the effectiveness of obtained results.展开更多
An adaptive multi-QoS routing algorithm called AMQRA is proposed for dynamic topology networks, such as satellite networks and Ad-hoc networks. The AMQRA is a distributed and mobile-agents-based routing algorithm, whi...An adaptive multi-QoS routing algorithm called AMQRA is proposed for dynamic topology networks, such as satellite networks and Ad-hoc networks. The AMQRA is a distributed and mobile-agents-based routing algorithm, which combines ant quantity system (AQS) with ant colony optimization (ACO) that is used in AntNet routing algorithm. In dynamic topology networks, the AMQRA achieves timely optimization for concave metric QoS constraint and fast convergence. The proposed routing algorithm is simulated in Iridium satellite constellation on OPNET. The results show that AMQRA not only outperforms the AntNet in convergence rate in dynamic topology networks but also can optimize concave metric QoS constraint and reasonably allot bandwidth to the load to avoid networks congestion.展开更多
One of the major factors inhibiting the construction of deep underground projects is the risk posed by rockbursts.A study was conducted on the access tunnel of the Shuangjiangkou hydropower station to determine the ev...One of the major factors inhibiting the construction of deep underground projects is the risk posed by rockbursts.A study was conducted on the access tunnel of the Shuangjiangkou hydropower station to determine the evolutionary mechanism of microfractures within the surrounding rock mass during rockburst development and develop a rockburst warning model.The study area was chosen through the combination of field studies with an analysis of the spatial and temporal distribution of microseismic(MS)events.The moment tensor inversion method was adopted to study rockburst mechanism,and a dynamic Bayesian network(DBN)was applied to investigating the sensitivity of MS source parameters for rockburst warnings.A MS multivariable rockburst warning model was proposed and validated using two case studies.The results indicate that fractures in the surrounding rock mass during the development of strain-structure rockbursts initially show shear failure and are then followed by tensile failure.The effectiveness of the DBN-based rockburst warning model was demonstrated using self-validation and K-fold cross-validation.Moment magnitude and source radius are the most sensitive factors based on an investigation of the influence on the parent and child nodes in the model,which can serve as important standards for rockburst warnings.The proposed rockburst warning model was found to be effective when applied to two actual projects.展开更多
Under unanticipated natural disasters, any failure of structure components may cause the crash of an entire structure system. Resilience is an important metric for the structure system. Although many resilience metric...Under unanticipated natural disasters, any failure of structure components may cause the crash of an entire structure system. Resilience is an important metric for the structure system. Although many resilience metrics and assessment approaches are proposed for engineering system, they are not suitable for complex structure systems, since the failure mechanisms of them are different under the influences of natural disasters. This paper proposes a novel resilience assessment metric for structure system from a macroscopic perspective, named structure resilience, and develops a corresponding assessment approach based on remaining useful life of key components. Dynamic Bayesian networks(DBNs) and Markov are applied to establish the resilience assessment model. In the degradation process, natural degradation and accelerated degradation are modelled by using Bayesian networks, and then coupled by using DBNs. In the recovery process, the model is established by combining Markov and DBNs. Subsea oil and gas pipelines are adopted to demonstrate the application of the proposed structure metric and assessment approach.展开更多
This paper concerns the disturbance rejection problem of a linear complex dynamical network subject to external disturbances. A dynamical network is said to be robust to disturbance, if the H∞ norm of its transfer fu...This paper concerns the disturbance rejection problem of a linear complex dynamical network subject to external disturbances. A dynamical network is said to be robust to disturbance, if the H∞ norm of its transfer function matrix from the disturbance to the performance variable is satisfactorily small. It is shown that the disturbance rejection problem of a dynamical network can be solved by analysing the H∞ control problem of a set of independent systems whose dimensions are equal to that of a single node. A counter-intuitive result is that the disturbance rejection level of the whole network with a diffusive coupling will never be better than that of an isolated node. To improve this, local feedback injections are applied to a small fraction of the nodes in the network. Some criteria for possible performance improvement are derived in terms of linear matrix inequalities. It is further demonstrated via a simulation example that one can indeed improve the disturbance rejection level of the network by pinning the nodes with higher degrees than pinning those with lower degrees.展开更多
In this paper, successive lag synchronization (SLS) on a dynamical network with communication delay is investigated. In order to achieve SLS on the dynamical network with communication delay, we design linear feedba...In this paper, successive lag synchronization (SLS) on a dynamical network with communication delay is investigated. In order to achieve SLS on the dynamical network with communication delay, we design linear feedback control and adaptive control, respectively. By using the Lyapunov function method, we obtain some sufficient conditions for global stability of SLS. To verify these results, some numerical examples are further presented. This work may find potential applications in consensus of multi-agent systems.展开更多
This paper proposes a novel approach for fault diagnosis of a time-delay complex dynamical network. Unlike the other methods, assuming that the dynamics of the network can be described by a linear stochastic model, or...This paper proposes a novel approach for fault diagnosis of a time-delay complex dynamical network. Unlike the other methods, assuming that the dynamics of the network can be described by a linear stochastic model, or using the state variables of nodes in the network to design an adaptive observer, it only uses the output variable of the nodes to design an observer and an adaptive law of topology matrix in the observer of a complex network, leading to simple design of the observer and easy realisation of topology monitoring for the complex networks in real engineering. The proposed scheme can monitor any changes of the topology structure of a time-delay complex network. The effectiveness of this method is successfully demonstrated by virtue of a complex networks with Lorenz model.展开更多
This paper studies the stochastic synchronization problem for time-varying complex dynamical networks. This model is totally different from some existing network models. Based on the Lyapunov stability theory, inequal...This paper studies the stochastic synchronization problem for time-varying complex dynamical networks. This model is totally different from some existing network models. Based on the Lyapunov stability theory, inequality techniques, and the properties of the Weiner process, some controllers and adaptive laws are designed to ensure achieving stochastic synchronization of a complex dynamical network model. A sufficient synchronization condition is given to ensure that the proposed network model is mean-square stable. Theoretical analysis and numerical simulation fully verify the main results.展开更多
The accuracy of target threat estimation has a great impact on command decision-making.The Bayesian network,as an effective way to deal with the problem of uncertainty,can be used to track the change of the target thr...The accuracy of target threat estimation has a great impact on command decision-making.The Bayesian network,as an effective way to deal with the problem of uncertainty,can be used to track the change of the target threat level.Unfortunately,the traditional discrete dynamic Bayesian network(DDBN)has the problems of poor parameter learning and poor reasoning accuracy in a small sample environment with partial prior information missing.Considering the finiteness and discreteness of DDBN parameters,a fuzzy k-nearest neighbor(KNN)algorithm based on correlation of feature quantities(CF-FKNN)is proposed for DDBN parameter learning.Firstly,the correlation between feature quantities is calculated,and then the KNN algorithm with fuzzy weight is introduced to fill the missing data.On this basis,a reasonable DDBN structure is constructed by using expert experience to complete DDBN parameter learning and reasoning.Simulation results show that the CF-FKNN algorithm can accurately fill in the data when the samples are seriously missing,and improve the effect of DDBN parameter learning in the case of serious sample missing.With the proposed method,the final target threat assessment results are reasonable,which meets the needs of engineering applications.展开更多
Prediction intervals(PIs)for industrial time series can provide useful guidance for workers.Given that the failure of industrial sensors may cause the missing point in inputs,the existing kernel dynamic Bayesian netwo...Prediction intervals(PIs)for industrial time series can provide useful guidance for workers.Given that the failure of industrial sensors may cause the missing point in inputs,the existing kernel dynamic Bayesian networks(KDBN),serving as an effective method for PIs construction,suffer from high computational load using the stochastic algorithm for inference.This study proposes a variational inference method for the KDBN for the purpose of fast inference,which avoids the timeconsuming stochastic sampling.The proposed algorithm contains two stages.The first stage involves the inference of the missing inputs by using a local linearization based variational inference,and based on the computed posterior distributions over the missing inputs the second stage sees a Gaussian approximation for probability over the nodes in future time slices.To verify the effectiveness of the proposed method,a synthetic dataset and a practical dataset of generation flow of blast furnace gas(BFG)are employed with different ratios of missing inputs.The experimental results indicate that the proposed method can provide reliable PIs for the generation flow of BFG and it exhibits shorter computing time than the stochastic based one.展开更多
This paper is concerned with the robust Hoo synchronization problem for a class of complex dynamical networks by applying the observer-based control. The proposed feedback control scheme is developed to ensure the asy...This paper is concerned with the robust Hoo synchronization problem for a class of complex dynamical networks by applying the observer-based control. The proposed feedback control scheme is developed to ensure the asymptotic stability of the augmented system, to reconstruct the non-measurable state variables of each node and to improve the H∞ performance related to the synchronization error and observation error despite the external disturbance. Based on the Lyapunov stability theory, a synchronization criterion is obtained under which the controlled network can be robustly stabilized onto a desired state with a guaranteed H∞ performance. The controller and the observer gains can be given by the feasible solutions of a set of linear matrix inequalities (LMIs). The effectiveness of the proposed control scheme is demonstrated by a numerical example through simulation.展开更多
This paper presents a new robust adaptive synchronization method for a class of uncertain dynamical complex networks with network failures and coupling time-varying delays. Adaptive schemes are proposed to adjust cont...This paper presents a new robust adaptive synchronization method for a class of uncertain dynamical complex networks with network failures and coupling time-varying delays. Adaptive schemes are proposed to adjust controller parameters for the faulty network compensations, as well as to estimate the upper and lower bounds of delayed state errors and perturbations to compensate the effects of delay and perturbation on-line without assuming symmetry or irreducibility of networks. It is shown that, through Lyapunov stability theory, distributed adaptive controllers con- structed by the adaptive schemes are successful in ensuring the achievement of asymptotic synchronization of networks in the present of faulty and delayed networks, and perturbation inputs. A Chua's circuit network example is finally given to show the effectiveness of the proposed synchronization criteria.展开更多
This paper studies the proactive spec-trum monitoring with one half-duplex spectrum moni-tor(SM)to cope with the potential suspicious wireless powered communications(SWPC)in dynamic spec-trum sharing networks.The jamm...This paper studies the proactive spec-trum monitoring with one half-duplex spectrum moni-tor(SM)to cope with the potential suspicious wireless powered communications(SWPC)in dynamic spec-trum sharing networks.The jamming-assisted spec-trum monitoring scheme via spectrum monitoring data(SMD)transmission is proposed to maximize the sum ergodic monitoring rate at SM.In SWPC,the suspi-cious communications of each data block occupy mul-tiple independent blocks,with a block dedicated to the wireless energy transfer by the energy-constrained suspicious nodes with locations in a same cluster(symmetric scene)or randomly distributed(asymmet-ric scene)and the remaining blocks used for the in-formation transmission from suspicious transmitters(STs)to suspicious destination(SD).For the sym-metric scene,with a given number of blocks for SMD transmission,namely the jamming operation,we first reveal that SM should transmit SMD signal(jam the SD)with tolerable maximum power in the given blocks.The perceived suspicious signal power at SM could be maximized,and thus so does the correspond-ing sum ergodic monitoring rate.Then,we further reveal one fundamental trade-off in deciding the op-timal number of given blocks for SMD transmission.For the asymmetric scene,a low-complexity greedy block selection scheme is proposed to guarantee the optimal performance.Simulation results show that the jamming-assisted spectrum monitoring schemes via SMD transmission achieve much better perfor-mance than conventional passive spectrum monitor-ing,since the proposed schemes can obtain more accu-rate and effective spectrum characteristic parameters,which provide basic support for fine-grained spectrum management and a solution for spectrum security in dynamic spectrum sharing network.展开更多
Efficient multi-machine cooperation and network dynamics still remain open that jeopardize great applications in largescale machine-to-machine(M2M) networks. Among all possible machine cooperation controls, to synchro...Efficient multi-machine cooperation and network dynamics still remain open that jeopardize great applications in largescale machine-to-machine(M2M) networks. Among all possible machine cooperation controls, to synchronize tremendous machines in a timing-efficient brings one of the greatest challenge and serves as the foundation for any other network control policies. In this paper, we propose a linear-time synchronization protocol in large M2M networks. Specifically, a closed-form of synchronization rate is provided by developing the statistical bounds of the second smallest eigenvalue of the graph Laplacian matrix. These bounds enable the efficient control of network dynamics, facilitating the timing synchronization in networks. Through a practical study in Metropolis, simulation results confirm our theoretical analysis and provide effective selection of wireless technologies, including Zigbee, Wi-Fi, and cellular systems, with respect to the deployed density of machines. Therefore, this paper successfully demonstrates a practical timing synchronization, to make a breakthrough of network dynamic control in real-world machine systems, such as Internet of Things.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos.72071153 and 72231008)Laboratory of Science and Technology on Integrated Logistics Support Foundation (Grant No.6142003190102)the Natural Science Foundation of Shannxi Province (Grant No.2020JM486)。
文摘Identifying critical nodes or sets in large-scale networks is a fundamental scientific problem and one of the key research directions in the fields of data mining and network science when implementing network attacks, defense, repair and control.Traditional methods usually begin from the centrality, node location or the impact on the largest connected component after node destruction, mainly based on the network structure.However, these algorithms do not consider network state changes.We applied a model that combines a random connectivity matrix and minimal low-dimensional structures to represent network connectivity.By using mean field theory and information entropy to calculate node activity,we calculated the overlap between the random parts and fixed low-dimensional parts to quantify the influence of node impact on network state changes and ranked them by importance.We applied this algorithm and the proposed importance algorithm to the overall analysis and stratified analysis of the C.elegans neural network.We observed a change in the critical entropy of the network state and by utilizing the proposed method we can calculate the nodes that indirectly affect muscle cells through neural layers.
基金supported by the National Natural Science Foundation of China(62172170)the Science and Technology Project of the State Grid Corporation of China(5100-202199557A-0-5-ZN).
文摘Complex networked systems,which range from biological systems in the natural world to infrastructure systems in the human-made world,can exhibit spontaneous recovery after a failure;for example,a brain may spontaneously return to normal after a seizure,and traffic flow can become smooth again after a jam.Previous studies on the spontaneous recovery of dynamical networks have been limited to undirected networks.However,most real-world networks are directed.To fill this gap,we build a model in which nodes may alternately fail and recover,and we develop a theoretical tool to analyze the recovery properties of directed dynamical networks.We find that the tool can accurately predict the final fraction of active nodes,and the prediction accuracy decreases as the fraction of bidirectional links in the network increases,which emphasizes the importance of directionality in network dynamics.Due to different initial states,directed dynamical networks may show alternative stable states under the same control parameter,exhibiting hysteresis behavior.In addition,for networks with finite sizes,the fraction of active nodes may jump back and forth between high and low states,mimicking repetitive failure-recovery processes.These findings could help clarify the system recovery mechanism and enable better design of networked systems with high resilience.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.62373197 and 61873326)。
文摘In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation of target state variables in multi-layer complex dynamical networks with nonlinear node dynamics is studied.A suitable functional state observer is constructed with the limited measurement.The parameters of the designed functional observer are obtained from the algebraic method and the stability of the functional observer is proven by the Lyapunov theorem.Some necessary conditions that need to be satisfied for the design of the functional state observer are obtained.Different from previous studies, in the multi-layer complex dynamical network with nonlinear node dynamics, the proposed method can estimate the state of target variables on some layers directly instead of estimating all the individual states.Thus, it can greatly reduce the placement of observers and computational cost.Numerical simulations with the three-layer complex dynamical network composed of three-dimensional nonlinear dynamical nodes are developed to verify the effectiveness of the method.
基金supported by the National Natural Science Foundation of China (6057408860274014)
文摘This paper proposes second-order consensus protocols with time-delays and gives the measure of the robustness of the protocols to the time-delay existing in the network of agents with second-order dynamics. By employing a frequency domain method, it is proven that the information states and their time derivatives of all the agents in the network achieve consensus asymptotically, respectively, for appropriate communication timedelay if the topology of weighted network is connected. Particularly, a tight upper bound on the communication time-delay that can be tolerated in the dynamic network is found. The consensus protocols are distributed in the sense that each agent only needs information from its neighboring agents, which reduces the complexity of connections between neighboring agents significantly. Numerical simulation results are provided to demonstrate the effectiveness and the sharpness of the theoretical results for second-order consensus in networks in the presence of communication time-delays.
基金supported in part by the National Natural Science Foundation of China (Grant Nos.60874091 and 61104103)the Natural Science Fund for Colleges and Universities in Jiangsu Province,China (Grant No.10KJB120001)the Climbing Program of Nanjing University of Posts & Telecommunications,China (Grant Nos.NY210013 and NY210014)
文摘A problem of topology identification for complex dynamical networks is investigated in this paper. An adaptive observer is proposed to identify the topology of a complex dynamical networks based on the Lyapunov stability theory. Here the output of the network and the states of the observer are used to construct the updating law of the topology such that the communication resources from the network to its observer are saved. Some convergent criteria of the adaptive observer are derived in the form of linear inequality matrices. Several numerical examples are shown to demonstrate the effectiveness of the proposed observer.
文摘In this article, a synchronization problem for master-slave Markovian switching complex dynamical networks with time-varying delays in nonlinear function via sliding mode control is investigated. On the basis of the appropriate Lyapunov-Krasovskii functional, introducing some free weighting matrices, new synchronization criteria are derived in terms of linear matrix inequalities (LMIs). Then, an integral sliding surface is designed to guarantee synchronization of master-slave Markovian switching complex dynamical networks, and the suitable controller is synthesized to ensure that the trajectory of the closed-loop error system can be driven onto the prescribed sliding mode surface. By using Dynkin's formula, we established the stochastic stablity of master-slave system. Finally, numerical example is provided to demonstrate the effectiveness of the obtained theoretical results.
基金the National Natural Science Foundation of China (No.60874024, 60574013).
文摘This paper studies local exponential synchronization of complex delayed networks with switching topology via switched system stability theory. First, by a common unitary matrix, the problem of synchronization is transformed into the stability analysis of some linear switched delay systems. Then, when all subnetworks are synchronizable, a delay-dependent sufficient condition is given in terms of linear matrix inequalities (LMIs) which guarantees the solvability of the synchronization problem under an average dwell time scheme. We extend this result to the case that not all subnetworks are synchronizable. It is shown that in addition to average dwell time, if the ratio of the total activation time of synchronizable and non-synchronizable subnetworks satisfy an extra condition, then the problem is also solvable. Two numerical examples of delayed dynamical networks with switching topology are given, which demonstrate the effectiveness of obtained results.
基金the National Natural Science Foundation of China (60532030)
文摘An adaptive multi-QoS routing algorithm called AMQRA is proposed for dynamic topology networks, such as satellite networks and Ad-hoc networks. The AMQRA is a distributed and mobile-agents-based routing algorithm, which combines ant quantity system (AQS) with ant colony optimization (ACO) that is used in AntNet routing algorithm. In dynamic topology networks, the AMQRA achieves timely optimization for concave metric QoS constraint and fast convergence. The proposed routing algorithm is simulated in Iridium satellite constellation on OPNET. The results show that AMQRA not only outperforms the AntNet in convergence rate in dynamic topology networks but also can optimize concave metric QoS constraint and reasonably allot bandwidth to the load to avoid networks congestion.
基金funding support from the National Natural Science Foundation of China(Grant No.42177143 and 51809221)the Science Foundation for Distinguished Young Scholars of Sichuan Province,China(Grant No.2020JDJQ0011).
文摘One of the major factors inhibiting the construction of deep underground projects is the risk posed by rockbursts.A study was conducted on the access tunnel of the Shuangjiangkou hydropower station to determine the evolutionary mechanism of microfractures within the surrounding rock mass during rockburst development and develop a rockburst warning model.The study area was chosen through the combination of field studies with an analysis of the spatial and temporal distribution of microseismic(MS)events.The moment tensor inversion method was adopted to study rockburst mechanism,and a dynamic Bayesian network(DBN)was applied to investigating the sensitivity of MS source parameters for rockburst warnings.A MS multivariable rockburst warning model was proposed and validated using two case studies.The results indicate that fractures in the surrounding rock mass during the development of strain-structure rockbursts initially show shear failure and are then followed by tensile failure.The effectiveness of the DBN-based rockburst warning model was demonstrated using self-validation and K-fold cross-validation.Moment magnitude and source radius are the most sensitive factors based on an investigation of the influence on the parent and child nodes in the model,which can serve as important standards for rockburst warnings.The proposed rockburst warning model was found to be effective when applied to two actual projects.
基金financially supported by the National Natural Science Foundation of China (Grant No. 51779267)the Taishan Scholars Project (Grant No. tsqn201909063)+3 种基金the Science and Technology Support Plan for Youth Innovation of Universities in Shandong Province (Grant No.2019KJB016)the National Key Research and Development Program of China (Grant No. 2019YFE0105100)the Fundamental Research Funds for the Central Universitiesthe Opening Fund of National Engineering Laboratory of Offshore Geophysical and Exploration Equipment (Grant No.20CX02301A)。
文摘Under unanticipated natural disasters, any failure of structure components may cause the crash of an entire structure system. Resilience is an important metric for the structure system. Although many resilience metrics and assessment approaches are proposed for engineering system, they are not suitable for complex structure systems, since the failure mechanisms of them are different under the influences of natural disasters. This paper proposes a novel resilience assessment metric for structure system from a macroscopic perspective, named structure resilience, and develops a corresponding assessment approach based on remaining useful life of key components. Dynamic Bayesian networks(DBNs) and Markov are applied to establish the resilience assessment model. In the degradation process, natural degradation and accelerated degradation are modelled by using Bayesian networks, and then coupled by using DBNs. In the recovery process, the model is established by combining Markov and DBNs. Subsea oil and gas pipelines are adopted to demonstrate the application of the proposed structure metric and assessment approach.
基金Project supported by the National Natural Science Foundation of China (Grant No 10832006)the Key Projects of Educational Ministry of China (Grant No 107110)
文摘This paper concerns the disturbance rejection problem of a linear complex dynamical network subject to external disturbances. A dynamical network is said to be robust to disturbance, if the H∞ norm of its transfer function matrix from the disturbance to the performance variable is satisfactorily small. It is shown that the disturbance rejection problem of a dynamical network can be solved by analysing the H∞ control problem of a set of independent systems whose dimensions are equal to that of a single node. A counter-intuitive result is that the disturbance rejection level of the whole network with a diffusive coupling will never be better than that of an isolated node. To improve this, local feedback injections are applied to a small fraction of the nodes in the network. Some criteria for possible performance improvement are derived in terms of linear matrix inequalities. It is further demonstrated via a simulation example that one can indeed improve the disturbance rejection level of the network by pinning the nodes with higher degrees than pinning those with lower degrees.
基金Project supported by the National Natural Science Foundation of China(Grant No.61004101)the Natural Science Foundation Program of Guangxi Province,China(Grant No.2015GXNSFBB139002)+1 种基金the Graduate Innovation Project of Guilin University of Electronic Technology,China(Grant No.GDYCSZ201472)the Guangxi Colleges and Universities Key Laboratory of Data Analysis and Computation,Guilin University of Electronic Technology,China
文摘In this paper, successive lag synchronization (SLS) on a dynamical network with communication delay is investigated. In order to achieve SLS on the dynamical network with communication delay, we design linear feedback control and adaptive control, respectively. By using the Lyapunov function method, we obtain some sufficient conditions for global stability of SLS. To verify these results, some numerical examples are further presented. This work may find potential applications in consensus of multi-agent systems.
基金supported in part by the Program for New Century Excellent Talents in University of China (Grant No. NCET-06-0510)the National Natural Science Foundation of China (Grant No. 60874091)
文摘This paper proposes a novel approach for fault diagnosis of a time-delay complex dynamical network. Unlike the other methods, assuming that the dynamics of the network can be described by a linear stochastic model, or using the state variables of nodes in the network to design an adaptive observer, it only uses the output variable of the nodes to design an observer and an adaptive law of topology matrix in the observer of a complex network, leading to simple design of the observer and easy realisation of topology monitoring for the complex networks in real engineering. The proposed scheme can monitor any changes of the topology structure of a time-delay complex network. The effectiveness of this method is successfully demonstrated by virtue of a complex networks with Lorenz model.
基金supported by the National Natural Science Foundation of China (Grant No.60974139)the Fundamental Research Funds for the Central Universities (Grant No.72103676)
文摘This paper studies the stochastic synchronization problem for time-varying complex dynamical networks. This model is totally different from some existing network models. Based on the Lyapunov stability theory, inequality techniques, and the properties of the Weiner process, some controllers and adaptive laws are designed to ensure achieving stochastic synchronization of a complex dynamical network model. A sufficient synchronization condition is given to ensure that the proposed network model is mean-square stable. Theoretical analysis and numerical simulation fully verify the main results.
基金supported by the Fundamental Scientific Research Business Expenses for Central Universities(3072021CFJ0803)the Advanced Marine Communication and Information Technology Ministry of Industry and Information Technology Key Laboratory Project(AMCIT21V3).
文摘The accuracy of target threat estimation has a great impact on command decision-making.The Bayesian network,as an effective way to deal with the problem of uncertainty,can be used to track the change of the target threat level.Unfortunately,the traditional discrete dynamic Bayesian network(DDBN)has the problems of poor parameter learning and poor reasoning accuracy in a small sample environment with partial prior information missing.Considering the finiteness and discreteness of DDBN parameters,a fuzzy k-nearest neighbor(KNN)algorithm based on correlation of feature quantities(CF-FKNN)is proposed for DDBN parameter learning.Firstly,the correlation between feature quantities is calculated,and then the KNN algorithm with fuzzy weight is introduced to fill the missing data.On this basis,a reasonable DDBN structure is constructed by using expert experience to complete DDBN parameter learning and reasoning.Simulation results show that the CF-FKNN algorithm can accurately fill in the data when the samples are seriously missing,and improve the effect of DDBN parameter learning in the case of serious sample missing.With the proposed method,the final target threat assessment results are reasonable,which meets the needs of engineering applications.
基金supported by the National Key Research andDevelopment Program of China(2017YFA0700300)the National Natural Sciences Foundation of China(61533005,61703071,61603069)。
文摘Prediction intervals(PIs)for industrial time series can provide useful guidance for workers.Given that the failure of industrial sensors may cause the missing point in inputs,the existing kernel dynamic Bayesian networks(KDBN),serving as an effective method for PIs construction,suffer from high computational load using the stochastic algorithm for inference.This study proposes a variational inference method for the KDBN for the purpose of fast inference,which avoids the timeconsuming stochastic sampling.The proposed algorithm contains two stages.The first stage involves the inference of the missing inputs by using a local linearization based variational inference,and based on the computed posterior distributions over the missing inputs the second stage sees a Gaussian approximation for probability over the nodes in future time slices.To verify the effectiveness of the proposed method,a synthetic dataset and a practical dataset of generation flow of blast furnace gas(BFG)are employed with different ratios of missing inputs.The experimental results indicate that the proposed method can provide reliable PIs for the generation flow of BFG and it exhibits shorter computing time than the stochastic based one.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60274099)the National High Technology Research and Development Program of China (Grant No. 2004AA412030)
文摘This paper is concerned with the robust Hoo synchronization problem for a class of complex dynamical networks by applying the observer-based control. The proposed feedback control scheme is developed to ensure the asymptotic stability of the augmented system, to reconstruct the non-measurable state variables of each node and to improve the H∞ performance related to the synchronization error and observation error despite the external disturbance. Based on the Lyapunov stability theory, a synchronization criterion is obtained under which the controlled network can be robustly stabilized onto a desired state with a guaranteed H∞ performance. The controller and the observer gains can be given by the feasible solutions of a set of linear matrix inequalities (LMIs). The effectiveness of the proposed control scheme is demonstrated by a numerical example through simulation.
基金Project supported by the Funds for Creative Research Groups of China(Grant No.60821063)the National Basic Research Program of China(Grant No.2009CB320604)+2 种基金the National Natural Science Foundation of China(Grant No.60974043)the 111 Project(Grant No.B08015)the Science and Technology Research Project of the Educational Department of Liaoning Province of China(Grant No.2008S156)
文摘This paper presents a new robust adaptive synchronization method for a class of uncertain dynamical complex networks with network failures and coupling time-varying delays. Adaptive schemes are proposed to adjust controller parameters for the faulty network compensations, as well as to estimate the upper and lower bounds of delayed state errors and perturbations to compensate the effects of delay and perturbation on-line without assuming symmetry or irreducibility of networks. It is shown that, through Lyapunov stability theory, distributed adaptive controllers con- structed by the adaptive schemes are successful in ensuring the achievement of asymptotic synchronization of networks in the present of faulty and delayed networks, and perturbation inputs. A Chua's circuit network example is finally given to show the effectiveness of the proposed synchronization criteria.
基金the Natural Science Foun-dations of China(No.62171464,61771487)the Defense Science Foundation of China(No.2019-JCJQ-JJ-221).
文摘This paper studies the proactive spec-trum monitoring with one half-duplex spectrum moni-tor(SM)to cope with the potential suspicious wireless powered communications(SWPC)in dynamic spec-trum sharing networks.The jamming-assisted spec-trum monitoring scheme via spectrum monitoring data(SMD)transmission is proposed to maximize the sum ergodic monitoring rate at SM.In SWPC,the suspi-cious communications of each data block occupy mul-tiple independent blocks,with a block dedicated to the wireless energy transfer by the energy-constrained suspicious nodes with locations in a same cluster(symmetric scene)or randomly distributed(asymmet-ric scene)and the remaining blocks used for the in-formation transmission from suspicious transmitters(STs)to suspicious destination(SD).For the sym-metric scene,with a given number of blocks for SMD transmission,namely the jamming operation,we first reveal that SM should transmit SMD signal(jam the SD)with tolerable maximum power in the given blocks.The perceived suspicious signal power at SM could be maximized,and thus so does the correspond-ing sum ergodic monitoring rate.Then,we further reveal one fundamental trade-off in deciding the op-timal number of given blocks for SMD transmission.For the asymmetric scene,a low-complexity greedy block selection scheme is proposed to guarantee the optimal performance.Simulation results show that the jamming-assisted spectrum monitoring schemes via SMD transmission achieve much better perfor-mance than conventional passive spectrum monitor-ing,since the proposed schemes can obtain more accu-rate and effective spectrum characteristic parameters,which provide basic support for fine-grained spectrum management and a solution for spectrum security in dynamic spectrum sharing network.
基金supported by the Major Research plan of the National Natural Science Foundation of China 9118008National Key Technology R&D Program of the Ministry of Science and Technology 2014BAC16B01
文摘Efficient multi-machine cooperation and network dynamics still remain open that jeopardize great applications in largescale machine-to-machine(M2M) networks. Among all possible machine cooperation controls, to synchronize tremendous machines in a timing-efficient brings one of the greatest challenge and serves as the foundation for any other network control policies. In this paper, we propose a linear-time synchronization protocol in large M2M networks. Specifically, a closed-form of synchronization rate is provided by developing the statistical bounds of the second smallest eigenvalue of the graph Laplacian matrix. These bounds enable the efficient control of network dynamics, facilitating the timing synchronization in networks. Through a practical study in Metropolis, simulation results confirm our theoretical analysis and provide effective selection of wireless technologies, including Zigbee, Wi-Fi, and cellular systems, with respect to the deployed density of machines. Therefore, this paper successfully demonstrates a practical timing synchronization, to make a breakthrough of network dynamic control in real-world machine systems, such as Internet of Things.