期刊文献+
共找到103篇文章
< 1 2 6 >
每页显示 20 50 100
In vitro culture and differentiation of rat embryonic midbrain-derived neural stem cells 被引量:19
1
作者 Xingli Deng Ruen Liu +5 位作者 Zhongtang Feng Jing Guo Wu Wang Deqiang Lei Hongyan Li Zhihua Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2008年第11期1241-1244,共4页
BACKGROUND: Midbrain-derived neural stem cells (mNSCs) can differentiate into functional mature dopaminergic neurons. The mNSCs are considered the ideal choice for cell therapy of Parkinson's disease. OBJECTIVE: ... BACKGROUND: Midbrain-derived neural stem cells (mNSCs) can differentiate into functional mature dopaminergic neurons. The mNSCs are considered the ideal choice for cell therapy of Parkinson's disease. OBJECTIVE: To isolate rat embryonic mNSCs and to observe the differentiation characteristics of mNSCs induced by cell growth-promoting factors. DESIGN, TIME AND SETTING: An in vitro cell culture study based on the molecular biology of nerve cells was carried out at the Institute of Clinical Medicine, China-Japan Friendship Hospital (China) from March to November 2007. MATERIALS: Sprague Dawley rats at embryonic day 14 were used in this study. Nestin antibody, β-Ⅲ tubulin antibody, glial fibrillary acidic protein (GFAP) antibody and cyclic nucleotide 3'-phosphohydrolase (CNPase) antibody were provided by Abcam; DMEM/F12 medium and N2 supplement were provided by Invitrogen; epidermal growth factor (EGF) and fibroblast growth factor-2 (FGF2) were provided by R&D Systems. METHODS: The ventral mesencephalon was dissected from embryonic day 14 rat embryos. By trypsin digestion and mechanical separation, the brain tissue was triturated into a fine single-cell suspension. The cells were cultured in 5 mL serum-free medium containing DMEM/FI 2, 1% N: supplement, 20 ng/mL EGF and FGF2. The mNSCs at the third generation were coated with 10ug/mL polylysine and induced to differentiate in the DMEM/F12 supplemented with 1% fetal bovine serum and 1% N2. MAIN OUTCOME MEASURES: The neural spheres of the third passage were identified by nestin immunofluorescence; at the same time, the cells were induced to differentiate, and the types of differentiated cell were identified by immunofluorescence for β Ⅲ tubulin, GFAP and CNPase. RESULTS: Seven days after primary culture, a great many neurospheres could be obtained by successive pasage. Immunofluorescence assays showed that the neurospheres were nestin positive, and after differentiation, the cells expressed GFAP, CNPase and β -Ⅲ-tubulin. CONCLUSION: Embryonic day 14 rat mNSCs can differentiate into neuron-like cells and glial cells following induction by EGF, FGF2 and N: additive. 展开更多
关键词 neural stem cells cell differentiation in vitro rat embryonic midbrain
下载PDF
In vitro growth, differentiation and biological characteristics of neural stem cells 被引量:20
2
作者 Meijiang Yun Lianzhong Wang +1 位作者 Yongcai Wang Xiaolian Jiang 《Neural Regeneration Research》 SCIE CAS CSCD 2006年第4期364-367,共4页
OBJECTIVE: To summarize the biological characteristics of neural stem cells, and the separation, purification. differentiation and source of neural stem cells. DATA SOURCES : An online search of Pubmed database was ... OBJECTIVE: To summarize the biological characteristics of neural stem cells, and the separation, purification. differentiation and source of neural stem cells. DATA SOURCES : An online search of Pubmed database was undertaken to identify English articles about the growth of neural stem cells in vitro published from January 2000 to October 2006 by using the keywords of "neural stem cells, bone marrow mesenchymal stem cells (BMSCs), umbilical cord blood stem cells, embryonic stem cells (ESC), separation methods, neural growth factor". And relevant articles published in IEEE/IEE Electronic Library (IEL) database, Springer Link database and Kluwer Online Journals were also searched, Chinese relevant articles published between January 2000 to October 2006 were searched with the same keywords in Chinese in Chinese journal full-text database. STUDY SELECTION : The articles were primarily screened, and then the full-texts were searched. Inclusive criteria: (1) Articles relevant to the biological characteristics and classification of neural stem cells; (2) Articles about the source, separation and differentiation of the ESCs, BMSCs and umbilical cord blood stem cells. The repetitive studies and reviews were excluded. DATA EXTRACTION : Thirty articles were selected from 203 relevant articles according to the inclusive criteria Articles were excluded because of repetition and reviews. DATA SYNTHESES : Neural stem cells have the ability of self-renewing and high differentiation, and they are obtained from ESCs, nerve tissue, nerve system, BMSCs and umbilical cord blood stem cells. ESCs can be separated by means of mechanical dissociation is better than that of the trypsin digestion, BMSCs by density gradient centrifuge separation, hemolysis, whole-blood culture, etc., and umbilical cord blood stem ceils by Ficoil density gradient centrifugation, hydroxyethyl starch (HES) centrifugation sedimentation, etc. Neural growth factor (NGF) and other factors play an important role in the growth of NSCs, such as transforming growth factor (TGF) is an important player in repairing organs, NGF accelerates the process of growth, insulin-like growth factor serves importantly in the differentiation of stem cells into neuron-like cells. CONCLUSION : As unipotent stem cells, NSCs have the abilities of self-renewal and potential of high differentiation. The method of mechanical dissociation is better than trypsin digestion in e separating ESCs. However, density gradient centrifuge separation is better than other methods in the separation of the BMSCs. NGF and other factors play an important role in the growth of NSCs. 展开更多
关键词 NSCS CELL stem differentiation and biological characteristics of neural stem cells in vitro growth BMSCS
下载PDF
Effects of folic acid on in vitro astrocytic differentiation of neural stem cells from neonatal rats 被引量:4
3
作者 Xumei Zhang Guowei Huang Zhihong Tian Guanglei Wang Dalin Ren 《Neural Regeneration Research》 SCIE CAS CSCD 2009年第8期613-617,共5页
BACKGROUND: Folic acid is essential for normal functioning of the nervous system. Previous studies have focused on the effects of folic acid on astrocyte proliferation. OBJECTIVE: To explore the effects of folic aci... BACKGROUND: Folic acid is essential for normal functioning of the nervous system. Previous studies have focused on the effects of folic acid on astrocyte proliferation. OBJECTIVE: To explore the effects of folic acid on astrocyte differentiation of neural stem cells (NSCs) and the related mechanisms in vitro. DESIGN, TIME AND SETTING: A randomized, controlled, grouping experiment was performed in Tianjin Medical University between August 2007 and October 2008. MATERIALS: Folic acid and 5-bromo-2-deoxyuridine (BrdU) were obtained from Sigma, MO, USA. Primary antibodies [rabbit anti-rat nestin, β-tubulin-Ⅲ, glial fibrillary acidic protein, and neurogeninl (Ngnl); mouse anti-rat BrdU and β-actin monoclonal antibodies] were purchased from Santa Cruz Biotechnology, USA. METHODS: At 6 days of NSC proliferation from 24-hour-old neonatal rats, BrdU incorporation assay was performed. Seven days after primary culture, NSCs were induced to differentiate with medium containing 5% fetal bovine serum. Cultured NSCs were assigned to three groups: control, low-dose (liquid media with 8 mg/L folic acid), and high-dose folic acid (liquid media with 44 mg/L folic acid). MAIN OUTCOME MEASURES: At day 7 after primary culture, the cells were identified as NSCs by immunocytochemical methods. Double-label immunofluorescence technique for glial fibrillary acidic protein/BrdU detected differentiated cells 7 days after induction. Western blot was used to analyze expression of Ngnl protein in NSCs. RESULTS: In serum-free suspension medium, neurospheres comprised a large number of Nestin-, glial fibrillary acidic protein-, β-tubulin-Ⅲ-, and BrdU-positive cells. Compared with the control group, high-dose folic acid supplementation led to an marked increase in the percentage of glial fibrillary acidic protein/BrdU-positive cells (P 〈 0.05), and significantly decreased Ngnl protein expression (P 〈 0.05). CONCLUSION: Folic acid promotes astrocytic differentiation of NSCs, which might be related to downregulation of Ngnl protein expression. 展开更多
关键词 folic acid neural stem cells ASTROCYTE neurogenin 1 in vitro
下载PDF
Evaluating effects of gypenosides and soyasaponins on differentiation of neural stem cells as an in vitro model 被引量:4
4
作者 吴婕 文铁桥 《Journal of Shanghai University(English Edition)》 CAS 2008年第1期91-94,共4页
Neural stem cell has a potential to differentiate into neurons, astrocytes and oligodendrocytes. It provides an in vitro model to screen herbal medicines on the cellular differentiation and development level. In this ... Neural stem cell has a potential to differentiate into neurons, astrocytes and oligodendrocytes. It provides an in vitro model to screen herbal medicines on the cellular differentiation and development level. In this work, active component from gypenosides and soyasaponins was prepared to investigate their effects on the differentiation of neural stem cells.. Both gypenosides and soyasaponins promote the differentiation of neural stem cells. This method provides speed and practicality for screening effective herbal medicine. It is well suited for studying the mechanism of cell differentiation and development. 展开更多
关键词 neural stem cell GYPENOSIDES SOYASAPONinS herbal medicine in vitro model
下载PDF
Biochemical properties of norepinephrine as a kind of neurotransmitter secreted by bone marrow-derived neural stem cells induced and differentiated in vitro 被引量:3
5
作者 Jianrong Chen Xiaodan Jiang Ruxiang Xu Peng Jin Yuxi Zou Lianshu Ding 《Neural Regeneration Research》 SCIE CAS CSCD 2006年第2期111-114,共4页
BACKGROUND: It has been proved by many experimental studies from the aspects of morphology and immunocytochemistry in recent years that bone marrow stromal cells (BMSCs) can in vitro induce and differentiate into t... BACKGROUND: It has been proved by many experimental studies from the aspects of morphology and immunocytochemistry in recent years that bone marrow stromal cells (BMSCs) can in vitro induce and differentiate into the cells possessing the properties of nerve cells. But the functions of BMSCs-derived neural stem cells(NSCs) and the differentiated neuron-like cells are still unclear. OBJECTIVE: To observe whether bone marrow-derived NSCs can secrete norepinephrine (NE) under the condition of in vitro culture, induce and differentiation, and analyze the biochemical properties of BMSCs-derived NSCs. DESIGN: A non-randomized and controlled experimental observation SETTING : Institute of Neuromedicine of Chinese PLA, Zhujiang Hospital, Southern Medical University MATERIALS: This experiment was carried out in the Institute of Neuromedicine of Chinese PLA, Zhujiang Hospital, Southern Medical University. The bone marrow used in the experiment was collected from 1.5- month-old healthy New Zealand white rabbits. METHODS: This experiment was carried out in the Institute of Neuromedicine of Chinese PLA, Zhujiang Hospital, Southern Medical University. The bone marrow used in the experiment was collected from 1.5 month-old healthy New Zealand white rabbits. BMSCs of rabbits were isolated and performed in vitro culture, induce and differentiation with culture medium of NSCs and differentiation-inducing factor, then identified with immunocytochemical method. Experimental grouping: ①Negative control group: L-02 hepatic cell and RPMI1640 culture medium were used. ② Background culture group: Only culture medium of NSCs as culture solution was added into BMSCs to perform culture, and 0.1 volume fraction of imported fetal bovine serum was supplemented 72 hours later. ③Differentiation inducing factor group: After culture for 72 hours, retinoic acid and glial cell line-derived neurotrophic factors were added in the culture medium of BMSCs and NSCs as corresponding inducing factors. The level of NE in each group was detected on the day of culture and 5, 7, 14 and 20 days after culture with high performance liquid chromatography (HPLC). The procedure was conducted 3 times in each group.Standard working curve was made according to the corresponding relationship of NE concentration and peak area. The concentration of NE every 1×10^7 cells was calculated according to standard curve and cell counting. MAIN OUTCOME MEASURES : The level of NE of cultured cells was detected with HPLC; immunocytochemistrical identification of Nestin and neuron specific nuclear protein was performed. RESULTS: ① On the 14^th day after cell culture, BMSCs turned into magnus and round cells which presented Nestin-positive antigen, then changed into neuron-like cells with long processus and presented neuron specific nuclear protein -positive antigen at the 20^th day following culture. ② The ratio of NE concentration and peak area has good linear relationship, and regression equation was Y=1.168 36+0.000 272 8X,r=-0.998 4. Coefficient variation (CV) was 〈 5% and the recovery rate was 92.39%( Y referred to concentration and X was peak area).③NE was well detached within 10 minutes under the condition of this experiment. ④ NE was detected in NSCs and their culture mediums, which were cultured for 7, 14 and 20 days respectively, but no NE in BMSCs, NSCs-free culture medium and L-02 hepatic cell which were as negative control under the HPLC examination. Analysis of variance showed that the level of NE gradually increased following the elongation of culture time (P 〈 0.01 ). No significant difference in the level of NE existed at the same time between differentiation inducing factor group and basic culture group(P 〉 0.05). CONCLUSION : BMSCs of rabbits can proliferate in vitro and express Nestin antigen; They can differentiate into neuron-like cells, express specific neucleoprotein of mature neurons, synthesize and secrete NE as a kind of neurotransmitter. 展开更多
关键词 bone Biochemical properties of norepinephrine as a kind of neurotransmitter secreted by bone marrow-derived neural stem cells induced and differentiated in vitro stem
下载PDF
Nerve growth factor promotes in vitro proliferation of neural stem cells from tree shrews 被引量:4
6
作者 Liu-lin Xiong Zhi-wei Chen Ting-hua Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第4期591-596,共6页
Neural stem cells promote neuronal regeneration and repair of brain tissue after injury,but have limited resources and proliferative ability in vivo.We hypothesized that nerve growth factor would promote in vitro prol... Neural stem cells promote neuronal regeneration and repair of brain tissue after injury,but have limited resources and proliferative ability in vivo.We hypothesized that nerve growth factor would promote in vitro proliferation of neural stem cells derived from the tree shrews,a primate-like mammal that has been proposed as an alternative to primates in biomedical translational research.We cultured neural stem cells from the hippocampus of tree shrews at embryonic day 38,and added nerve growth factor(100 μg/L) to the culture medium.Neural stem cells from the hippocampus of tree shrews cultured without nerve growth factor were used as controls.After 3 days,fluorescence microscopy after DAPI and nestin staining revealed that the number of neurospheres and DAPI/nestin-positive cells was markedly greater in the nerve growth factor-treated cells than in control cells.These findings demonstrate that nerve growth factor promotes the proliferation of neural stem cells derived from tree shrews. 展开更多
关键词 nerve regeneration tree shrews hippocampus neural stem cells cell proliferation nerve growth factor neurosphere embryo cell number cell therapy in vitro neural regeneration
下载PDF
Microelectrode arrays for monitoring neural activity in neural stem cells with modulation by glutamate in vitro 被引量:1
7
作者 Fei Gao Jinping Luo +4 位作者 Yilin Song Enhui He Yu Zhang Guihua Xiao Xinxia Cai 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2020年第2期69-74,共6页
In this study, a 60-channel microelectrode array(MEA) was fabricated and used to monitor the neural spikes and local field potentials(LFPs) of neurons differentiated from rat neural stem cells in vitro. The neurons we... In this study, a 60-channel microelectrode array(MEA) was fabricated and used to monitor the neural spikes and local field potentials(LFPs) of neurons differentiated from rat neural stem cells in vitro. The neurons were grown on the MEA surface to detect neural signals. Glutamate(Glu) was used to modulate neural activity during experiments. To enhance detection performance, platinum nanoparticles were modified onto the microelectrode site surface. Glutamate stimulated neural spikes and LFPs were recorded using the MEA. The average spike amplitude was approximately 70 μV in the normal state. The spike amplitude increased by 29% from 70 μV to 90 μV with Glu modulation. The firing rate increased by 69% from 4.01 Hz to 6.8 Hz with Glu modulation. The LFP power increased from 326 μW in the normal state to 617 μW with Glu modulation in the 0–10 Hz frequency band. Data analysis shows that neural activity stimulated by Glu modulation was recorded experimentally at high temporal-spatial resolution. These results may provide a new neuron detection method, as well as further understanding of neural stem cell spike firing and associated mechanisms. 展开更多
关键词 MEA GLUTAMATE SPIKES neural stem cells in vitro
下载PDF
Neural crest derived stem cells from dental pulp and tooth-associated stem cells for peripheral nerve regeneration 被引量:12
8
作者 Alessandra Pisciotta Laura Bertoni +3 位作者 Antonio Vallarola Giulia Bertani Daniela Mecugni Gianluca Carnevale 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第3期373-381,共9页
The peripheral nerve injuries,representing some of the most common types of traumatic lesions affecting the nervous system,are highly invalidating for the patients besides being a huge social burden.Although periphera... The peripheral nerve injuries,representing some of the most common types of traumatic lesions affecting the nervous system,are highly invalidating for the patients besides being a huge social burden.Although peripheral nervous system owns a higher regenerative capacity than does central nervous system,mostly depending on Schwann cells intervention in injury repair,several factors determine the extent of functional outcome after healing.Based on the injury type,different therapeutic approaches have been investigated so far.Nerve grafting and Schwann cell transplantation have represented the gold standard treatment for peripheral nerve injuries,however these approaches own limitations,such as scarce donor nerve availability and donor site morbidity.Cell based therapies might provide a suitable tool for peripheral nerve regeneration,in fact,the ability of different stem cell types to differentiate towards Schwann cells in combination with the use of different scaffolds have been widely investigated in animal models of peripheral nerve injuries in the last decade.Dental pulp is a promising cell source for regenerative medicine,because of the ease of isolation procedures,stem cell proliferation and multipotency abilities,which are due to the embryological origin from neural crest.In this article we review the literature concerning the application of tooth derived stem cell populations combined with different conduits to peripheral nerve injuries animal models,highlighting their regenerative contribution exerted through either glial differentiation and neuroprotective/neurotrophic effects on the host tissue. 展开更多
关键词 GLIAL differentiation human dental PULP stem cells nerve regeneration neural crest NEUROPROTECTION TOOTH
下载PDF
Directional induction of dopaminergic neurons from neural stem cells using substantia nigra homogenates and basic fibroblast growth factor
9
作者 Jintao Li Qi Yan +2 位作者 Yiliu Ma Zhongtang Feng Tinghua Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第7期511-516,共6页
To date, complex components of available reagents have been used for directional induction of neural stem cells into dopaminergic neurons, resulting in a poor ability to repeat experiments. This study sought to invest... To date, complex components of available reagents have been used for directional induction of neural stem cells into dopaminergic neurons, resulting in a poor ability to repeat experiments. This study sought to investigate whether a homogenate of the substantia nigra of adult rats and/or basic fibroblast growth factor could directionally induce neural stem cells derived from the subventricular zone of embryonic rats to differentiate into dopaminergic neurons. Tyrosine hydroxylase-positive cells were observed exclusively after induction with the homogenate supernatant of the substantia nigra from adult rats and basic fibroblast growth factor for 48 hours in vitro. However, in the groups treated with homogenate supernatant or basic fibroblast growth factor alone, tyrosine hydroxylase expression was not observed. Moreover, the content of dopamine in the culture medium of subventricular zone neurons was significantly increased at 48 hours after induction with the homogenate supernatant of the substantia nigra from adult rats and basic fibroblast growth factor. Experimental findings indicate that the homogenate supernatant of the substantia nigra from adult rats and basic fibroblast growth factor could directionally induce neural stem cells derived from the subventricular zone of embryonic rats to differentiate into dopaminergic neurons in the substantia nigra with the ability to secrete dopamine. 展开更多
关键词 directional induction in vitro homogenate of substantia nigra basic fibroblast growth factor subventricular zone neural stem cells dopaminergic neurons
下载PDF
Morphogenesis of human embryonic stem cells into mature neurons under in vitro culture conditions
10
作者 Geeta Shroff 《World Journal of Experimental Medicine》 2016年第4期72-79,共8页
AIM To describe the morphogenesis of different neuronal cells from the human embryonic stem cell(h ESC) line,SCT-N,under in vitro culture conditions.METHODS The directed neuronal cell line was produced from a single,s... AIM To describe the morphogenesis of different neuronal cells from the human embryonic stem cell(h ESC) line,SCT-N,under in vitro culture conditions.METHODS The directed neuronal cell line was produced from a single,spare,pre-implantation stage fertilized ovum that was obtained during a natural in vitro fertilization process. The h ESCs were cultured and maintained as per our proprietary in-house technology in a Good Manufacturing Practice,Good Laboratory Practice and Good Tissue Practice compliant laboratory. The cell line was derived and incubated in aerobic conditions. The cells were examined daily under a phase contrast microscope for their growth and differentiation. RESULTS Different neural progenitor cells(NPCs) and differentiating neurons were observed under the culture conditions. Multipotent NPCs differentiated into all three types of nervous system cells,i.e.,neurons,oligodendrocytes and astrocytes. Small projections resembling neurites or dendrites,and protrusion coming out of the cells,were observed. Differentiating cells were observed at day 18 to 20. The differentiating neurons,neuronal bodies,axons,and neuronal tissue were observed on day 21 and day 30 of the culture. On day 25 and day 30,prominent neurons,axons and neuronal tissue were observed under phase contrast microscopy. 4',6-diamidino-2-phenylindole staining also indicated the pattern of differentiating neurons,axonal structure and neuronal tissue. CONCLUSION This study describes the generation of different neuronal cells from an h ESC line derived from biopsy of blastomeres at the two-cell cleavage stage from a discarded embryo. 展开更多
关键词 Human EMBRYONIC stem cells MULTIPOTENCY neural differentiation neural PROGENITOR cells in-vitro fertilization
下载PDF
Caveolin-1 downregulation promotes the dopaminergic neuron-like differentiation of human adipose-derived mesenchymal stem cells 被引量:3
11
作者 Chao Han Ya-Jun Wang +5 位作者 Ya-Chen Wang Xin Guan Liang Wang Li-Ming Shen Wei Zou Jing Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2021年第4期714-720,共7页
Previous studies have shown that caveolin-1 is involved in regulating the differentiation of mesenchymal stem cells.However,its role in the differentiation of human adipose mesenchymal stem cells into dopaminergic neu... Previous studies have shown that caveolin-1 is involved in regulating the differentiation of mesenchymal stem cells.However,its role in the differentiation of human adipose mesenchymal stem cells into dopaminergic neurons remains unclear.The aim of this study was to investigate whether caveolin-1 regulates the differentiation of human adipose mesenchymal stem cells into dopaminergic-like neurons.We also examined whether the expression of caveolin-1 could be modulated by RNA interference technology to promote the differentiation of human adipose mesenchymal stem cells into dopaminergic-like neurons.The differentiation of human adipose mesenchymal stem cells into dopaminergic neurons was evaluated morphologically and by examining expression of the markers tyrosine hydroxylase,Lmx1a and Nurr1.The analyses revealed that during the differentiation of human adipose mesenchymal stem cells into dopaminergic neurons,the expression of caveolin-1 is decreased.Notably,the downregulation of caveolin-1 promoted the differentiation of human adipose mesenchymal stem cells into dopaminergic-like neurons,and it increased the expression of tyrosine hydroxylase,Lmx1a and Nurr1.Together,our findings suggest that caveolin-1 plays a negative regulatory role in the differentiation of dopaminergic-like neurons from stem cells,and it may therefore be a potential molecular target for strategies for regulating the differentiation of these cells.This study was approved by the Medical Ethics Committee of the First Affiliated Hospital of Dalian Medical University of China(approval No.PJ-KS-KY-2020-54)on March 7,2017. 展开更多
关键词 cells factor in vitro neural differentiation Parkinson’s disease PLASTICITY protein stem cells
下载PDF
Follicle and melanocyte stem cells, and their application in neuroscience A Web of Science-based literature analysis 被引量:1
12
作者 Weifu Wu 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第34期2734-2741,共8页
OBJECTIVE: To identify global research trends of follicle and melanocyte stem cells, and their application in neuroscience. DATA RETRIEVAL: We performed a bibliometric analysis of studies from 2002 to 2011 on follic... OBJECTIVE: To identify global research trends of follicle and melanocyte stem cells, and their application in neuroscience. DATA RETRIEVAL: We performed a bibliometric analysis of studies from 2002 to 2011 on follicle and melanocyte stem cells, and their application in neuroscience, which were retrieved from the Web of Science, using the key words follicle stem cell or melanocyte stem cell, and neural, neuro or nerve. SELECTION CRITERIA: Inclusion criteria: (a) peer-reviewed published articles on follicle and melanocyte stem cells, and their application in neuroscience, which were indexed in the Web of Science; (b) original research articles, reviews, meeting abstracts, proceedings papers, book chapters, editorial material, and news items. Exclusion criteria: (a) articles that required manual searching or telephone access; (b) documents that were not published in the public domain; and (c) a number of corrected papers from the total number of articles. MAIN OUTCOME MEASURES: (1) Distribution of publications on follicle and melanocyte stem cells by years, journals, countries, institutions, institutions in China, and most cited papers. (2) Distribution of publications on the application of follicle and melanocyte stem cells in neuroscience by years, journals, countries, institutions, and most cited papers. RESULTS: Of the 348 publications from 2002 to 2011 on follicle and melanocyte stem cells, which were retrieved from the Web of Science, more than half were from American authors and institutes. The most prolific institutions in China for publication of papers on follicle and melanocyte stem cells were the Fourth Military Medical University and Third Military Medical University. The most prolific journals for publication of papers on follicle and melanocyte stem cells were the Journal of Investigative Dermatology, Pigment Cell & Melanoma Research. Of the 63 publications from 2002 to 2011 on the application of follicle and melanocyte stem cells in neuroscience, which were retrieved from the Web of Science, more than half were from American authors and institutes, and no papers were from Chinese authors and institutes. The most prolific journals for publication of papers on the application of follicle and melanocyte stem cells in neuroscience were the Journal of Investigative Dermatology, Pigment Cell & Melanoma Research. CONCLUSION: Based on our analysis of the literature and research trends, we found that follicle stem cells might offer further benefits in neural regenerative medicine. 展开更多
关键词 skin stem cell follicle stem cell melanocyte stem cell skin-derived precursor neural crest stem cell neuron glial cell differentiation BIBLIOMETRIC neural regeneration
下载PDF
S100 protein expression during induced Schwann cell-like cell differentiation of rat bone marrow mesenchymal cells in vitro 被引量:1
13
作者 Wenting Li Zenglu Xu +1 位作者 Fei Ding Xiaosong Gu 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第3期178-184,共7页
BACKGROUND: S100 protein can promote axonal growth. Therefore, transplantation of induced bone marrow-derived mesenchymal stem cells (MSCs) that can secrete S100 may provide a beneficial microenvironment for neural... BACKGROUND: S100 protein can promote axonal growth. Therefore, transplantation of induced bone marrow-derived mesenchymal stem cells (MSCs) that can secrete S100 may provide a beneficial microenvironment for neural regeneration. OBJECTIVE: To explore the changes in S100 expression during rat MSCs differentiation into Schwann ceils in vitro. DESIGN, TIME AND SETTING: This cytology experiment was performed at the Jiangsu Key Laboratory of Neuroregeneration, Nantong University in China, from January 2006 to May 2007. MATERIALS: The rabbit anti-S100 polyclonal antibody was purchased from Dako, Denmark; the mouse anti-rat S100 monoclonal antibody was purchased from Sigma, USA. METHODS: MSCs were cultured from adult Sprague-Dawley rat femur and tibia. Cell proliferation was determined by the MTT method and CD markers, and cell cycle was measured by flow cytometry. MSCs were induced to differentiate into SC cells. SC cells were stained for S100 protein, glial fibrillary acidic protein, and low-affinity nerve growth factor receptor. S100 protein and mRNA levels were evaluated by flow cytometry, Western blot, and reverse transcription-polymerase chain reaction. MAIN OUTCOME MEASURES: S100 protein and mRNA expression. RESULTS: MSCs exhibited high amplification potential over eight passages. Prior to induction, the majority of MSCs were at the G0/G1 phase of the cell cycle. After induction, MSCs displayed morphology changes similar to Schwann cells. Moreover, induction increased S100 mRNA levels. Immunofluorescence showed that MSCs expressed S100 protein, glial fibrillary acidic protein, and low-affinity nerve growth factor receptor at 7 days of induction. Induction also increased S100 protein levels compared with untreated MSCs. CONCLUSION: MSCs are capable of differentiating into Schwann cells-like cells under conditional induction in vitro, with increasing S100 mRNA and protein expression. 展开更多
关键词 bone marrow mesenchymal stem cells inDUCTION Schwann cell-like cells S100 protein in vitro stem cells neural regeneration
下载PDF
Mechanisms involved in selecting and maintaining neuroblastoma cancer stem cell populations, and perspectives for therapeutic targeting 被引量:2
14
作者 Antonietta Rosella Farina Lucia Annamaria Cappabianca +2 位作者 Veronica Zelli Michela Sebastiano Andrew Reay Mackay 《World Journal of Stem Cells》 SCIE 2021年第7期685-736,共52页
Pediatric neuroblastomas(NBs)are heterogeneous,aggressive,therapy-resistant embryonal tumours that originate from cells of neural crest(NC)origin and in particular neuroblasts committed to the sympathoadrenal progenit... Pediatric neuroblastomas(NBs)are heterogeneous,aggressive,therapy-resistant embryonal tumours that originate from cells of neural crest(NC)origin and in particular neuroblasts committed to the sympathoadrenal progenitor cell lineage.Therapeutic resistance,post-therapeutic relapse and subsequent metastatic NB progression are driven primarily by cancer stem cell(CSC)-like subpopulations,which through their self-renewing capacity,intermittent and slow cell cycles,drug-resistant and reversibly adaptive plastic phenotypes,represent the most important obstacle to improving therapeutic outcomes in unfavourable NBs.In this review,dedicated to NB CSCs and the prospects for their therapeutic eradication,we initiate with brief descriptions of the unique transient vertebrate embryonic NC structure and salient molecular protagonists involved NC induction,specification,epithelial to mesenchymal transition and migratory behaviour,in order to familiarise the reader with the embryonic cellular and molecular origins and background to NB.We follow this by introducing NB and the potential NC-derived stem/progenitor cell origins of NBs,before providing a comprehensive review of the salient molecules,signalling pathways,mechanisms,tumour microenvironmental and therapeutic conditions involved in promoting,selecting and maintaining NB CSC subpopulations,and that underpin their therapy-resistant,self-renewing metastatic behaviour.Finally,we review potential therapeutic strategies and future prospects for targeting and eradication of these bastions of NB therapeutic resistance,post-therapeutic relapse and metastatic progression. 展开更多
关键词 neural crest NEUROBLASTOMA Cancer stem cells Polyploid giant cancer cells molecular mechanisms Therapeutic targeting Tumour microenvironment
下载PDF
Importance of being Nernst: Synaptic activity and functional relevance in stem cell-derived neurons
15
作者 Aaron B Bradford Patrick M McNutt 《World Journal of Stem Cells》 SCIE CAS 2015年第6期899-921,共23页
Functional synaptogenesis and network emergence are signature endpoints of neurogenesis. These behaviors provide higher-order confirmation that biochemical and cellular processes necessary for neurotransmitter release... Functional synaptogenesis and network emergence are signature endpoints of neurogenesis. These behaviors provide higher-order confirmation that biochemical and cellular processes necessary for neurotransmitter release, post-synaptic detection and network propagationof neuronal activity have been properly expressed and coordinated among cells. The development of synaptic neurotransmission can therefore be considered a defining property of neurons. Although dissociated primary neuron cultures readily form functioning synapses and network behaviors in vitro, continuously cultured neurogenic cell lines have historically failed to meet these criteria. Therefore, in vitro-derived neuron models that develop synaptic transmission are critically needed for a wide array of studies, including molecular neuroscience, developmental neurogenesis, disease research and neurotoxicology. Over the last decade, neurons derived from various stem cell lines have shown varying ability to develop into functionally mature neurons. In this review, we will discuss the neurogenic potential of various stem cells populations, addressing strengths and weaknesses of each, with particular attention to the emergence of functional behaviors. We will propose methods to functionally characterize new stem cell-derived neuron(SCN) platforms to improve their reliability as physiological relevant models. Finally, we will review how synaptically active SCNs can be applied to accelerate research in a variety of areas. Ultimately, emphasizing the critical importance of synaptic activity and network responses as a marker of neuronal maturation is anticipated to result in in vitro findings that better translate to efficacious clinical treatments. 展开更多
关键词 Synapses NEUROTRANSMISSION in vitrotechniques inDUCED PLURIPOTENT stem cells Neuronalnetworks Neurogenesis neural stem cells Embryonicstem cells inDUCED NEURONS
下载PDF
不同胚层来源成体干细胞修复周围神经损伤
16
作者 郑家晨 杨恩同 +1 位作者 朱弈舟 刘芳 《中国组织工程研究》 CAS 北大核心 2025年第19期4102-4110,共9页
背景:成体干细胞疗法是周围神经损伤修复与再生领域的研究热点之一。中胚层被视为成体干细胞的理想来源,间充质干细胞具有获得率高、来源广、增殖快等优异性能。而外胚层来源成体干细胞,尤其是神经嵴干细胞,具有神经源性,越来越受到研... 背景:成体干细胞疗法是周围神经损伤修复与再生领域的研究热点之一。中胚层被视为成体干细胞的理想来源,间充质干细胞具有获得率高、来源广、增殖快等优异性能。而外胚层来源成体干细胞,尤其是神经嵴干细胞,具有神经源性,越来越受到研究人员的关注。目的:对来自外胚层和中胚层的多功能成体干细胞在周围神经损伤修复与再生中的作用及机制进行简要综述,探究不同来源成体干细胞的研究进展与应用前景,并结合临床研究,探讨成体干细胞疗法潜在的应用价值以及亟待解决的问题。方法:第一作者于2024年2月应用计算机在PubMed和SinoMed数据库检索2001年12月至2024年2月相关文献,以“ectodermal stem cells,mesenchymal stem cells,peripheral nerve injury,repair,regeneration”为英文检索词,以“外胚层干细胞、间充质干细胞、周围神经损伤、修复、再生”为中文检索词,最终纳入69篇文献进行分析论述。结果与结论:①外胚层来源成体干细胞具有优异的分化和再生潜能,尤其是毛囊神经嵴干细胞、嗅干细胞、牙外胚层干细胞等,具有神经源性,可在体外表达神经特异性标志物,但目前缺少临床试验研究。②中胚层来源成体干细胞种类多、易获得及纯化,其中骨髓间充质干细胞和脐带间充质干细胞在周围神经损伤修复的应用疗效及安全性方面有相关临床试验支持,能改善感觉及运动神经传导,且在随访中未出现并发症和明显不良反应。骨髓间充质干细胞的获取需行侵入性外科手术且要求患者与捐赠者骨髓配型吻合,应用受到一定限制;而脐带间充质干细胞虽无需侵入性获取,但分离较困难且表型不稳定。③内胚层来源成体干细胞常难以在体外生长,应用受限,目前应用于临床的可能性低。④综合来看,骨髓间充质干细胞仍为周围神经损伤干细胞治疗的首选细胞,适用于无外科手术禁忌且符合配型要求的情况,其次为脐带间充质干细胞,辅以分离方法的改进和表型稳定性的提高策略。⑤牙外胚层干细胞以及脂肪间充质干细胞具有较高应用潜能,有待进一步临床试验,其他外胚层、中胚层来源成体干细胞各以其优异特性在动物及细胞实验研究中具有显著优势。 展开更多
关键词 成体干细胞 周围神经损伤 毛囊神经嵴干细胞 嗅干细胞 牙外胚层干细胞 骨髓间充质干细胞 脐带间充质干细胞 羊水间充质干细胞 皮肤干细胞 肌肉间充质干细胞
下载PDF
成年小鼠触液神经元体外分离培养及自我更新能力的鉴定
17
作者 上官泽宇 陈婵娟 +5 位作者 李琦哲 谭伟 颜海健 王春庆 豆晓伟 李青 《中国组织工程研究》 CAS 北大核心 2025年第13期2728-2735,共8页
背景:课题组前期成功在体外分离培养乳鼠触液神经元,尚无研究报道有效分离培养高纯度成年小鼠触液神经元的方法,且触液神经元的自我更新能力是否随着年龄发生变化尚无研究。目的:建立一种高纯度成年小鼠触液神经元体外分离培养的方法,... 背景:课题组前期成功在体外分离培养乳鼠触液神经元,尚无研究报道有效分离培养高纯度成年小鼠触液神经元的方法,且触液神经元的自我更新能力是否随着年龄发生变化尚无研究。目的:建立一种高纯度成年小鼠触液神经元体外分离培养的方法,并鉴定成年小鼠触液神经元与乳鼠触液神经元在体外的自我更新能力。方法:从成年3月龄小鼠颈髓分离含有触液神经元的原代细胞贴壁培养并利用融合多模态成像基因的慢病毒转染细胞,通过嘌呤霉素筛选得到高纯度成年小鼠触液神经元细胞,在完全培养基中悬浮培养。通过免疫荧光检测成年小鼠触液神经元表达神经干细胞标记物巢蛋白(Nestin)及SOX2情况,观察成年小鼠触液神经元体外成球与传代能力;将同等数量(5×10^(3))的第3代成年小鼠及乳鼠触液神经元在同等条件下分为2组,分别接种在含有完全培养基的超低黏附培养板中,在体积分数5%CO_(2),37℃恒温箱悬浮培养,通过体外成球、CCK8实验、qPCR和Western blot鉴定成年小鼠及乳鼠触液神经元的自我更新能力。结果与结论:①实验成功在成年小鼠体内分离出高纯度触液神经元,在体外表达Nestin及SOX2,能形成神经球并连续传代。②成年小鼠触液神经元体外自我更新能力较乳鼠相比明显减弱,细胞培养到第4天时乳鼠触液神经元已经形成直径约为150μm的神经球,而成年小鼠触液神经元所形成的神经球直径仅为40μm(P<0.0001)。③CCK8增殖实验结果表明,成年小鼠触液神经元的增殖活性在培养后各时间点显著弱于乳鼠(P<0.0001)。④qPCR和Western blot检测发现成年小鼠触液神经元Nestin及SOX2的mRNA(P<0.0001)和蛋白表达量(P<0.01)较乳鼠显著下降。⑤上述结果证实,成年小鼠触液神经元的体外自我更新能力显著弱于乳鼠。 展开更多
关键词 脊髓损伤 成年小鼠触液神经元 内源性神经干细胞 自我更新能力 体外培养 细胞提纯 融合多模态成像基因的慢病毒 干细胞潜能鉴定
下载PDF
Ultrastructure of neuronal-like cells differentiated from adult adipose-derived stromal cells 被引量:16
18
作者 Changqing Ye Xiaodong Yuan Hui Liu Yanan Cai 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第19期1456-1463,共8页
β-mercaptoethanol induces in vitro adult adipose-derived stromal cells (ADSCs) to differentiate into neurons. However, the ultrastructural features of the differentiated neuronal-like cells remain unknown. In the p... β-mercaptoethanol induces in vitro adult adipose-derived stromal cells (ADSCs) to differentiate into neurons. However, the ultrastructural features of the differentiated neuronal-like cells remain unknown. In the present study, inverted phase contrast microscopy was utilized to observe β-mercaptoethanol-induced differentiation of neuronal-like cells from human ADSCs, and immunocytochemistry and real-time polymerase chain reaction were employed to detect expression of a neural stem cells marker (nestin), a neuronal marker (neuron-specific enolase), and a glial marker (glial fibrillary acidic protein). In addition, ultrastructure of neuronal-like cells was observed by transmission election microscopy. Results revealed highest expression rate of nestin and neuron-specific enolase at 3 and 5 hours following induced differentiation; cells in the 5-hour induction group exhibited a neuronal-specific structure, i.e., Nissl bodies. However, when induction solution was replaced by complete culture medium after 8-hour induction, the differentiated cells reverted to the fibroblast-like morphology from day 1. These results demonstrate that β-mercaptoethanol-induced ADSCs induced differentiation into neural stem cells, followed by morphology of neuronal-like cells. However, this differentiation state was not stable. 展开更多
关键词 human adipose-derived stromal cells β-mercaptoethanol induction in vitro differentiation ULTRASTRUCTURE neural stem cells neural regeneration
下载PDF
Generation of diverse neural cell types through direct conversion
19
作者 Gayle F Petersen Padraig M Strappe 《World Journal of Stem Cells》 SCIE CAS 2016年第2期32-46,共15页
A characteristic of neurological disorders is the loss of critical populations of cells that the body is unable to replace,thus there has been much interest in identifying methods of generating clinically relevant num... A characteristic of neurological disorders is the loss of critical populations of cells that the body is unable to replace,thus there has been much interest in identifying methods of generating clinically relevant numbers of cells to replace those that have been damaged or lost.The process of neural direct conversion,in which cells of one lineage are converted into cells of a neural lineage without first inducing pluripotency,shows great potential,with evidence of the generation of a range of functional neural cell types both in vitro and in vivo,through viral and non-viral delivery of exogenous factors,as well as chemical induction methods.Induced neural cells have been proposed as an attractive alternative to neural cells derived from embryonic or induced pluripotent stem cells,with prospective roles in the investigation of neurological disorders,including neurodegenerative disease modelling,drug screening,and cellular replacement for regenerative medicine applications,however further investigations into improving the efficacy and safety of these methods need to be performed before neural direct conversion becomes a clinically viable option.In this review,we describe the generation of diverse neural cell types via direct conversion of somatic cells,with comparison against stem cell-based approaches,as well as discussion of their potential research and clinical applications. 展开更多
关键词 Adult stem cells Embryonic stem cells Generation of neural cells induced pluripotent stem cells in vitro differentiation in vivo differentiation Clinical applications Direct conversion induced neural cells
下载PDF
毛囊表皮神经嵴干细胞调节面神经损伤后局部炎症因子的表达水平 被引量:1
20
作者 唐笠 潘瑶 朱国臣 《中国组织工程研究》 CAS 北大核心 2023年第33期5249-5255,共7页
背景:既往研究报道了毛囊表皮神经嵴干细胞在周围神经修复中的巨大潜力,但其炎症调节作用在面神经修复研究中鲜有报道。目的:探究毛囊表皮神经嵴干细胞能否调节面神经损伤后早期局部肿瘤坏死因子α和白细胞介素4表达水平,以促进面神经... 背景:既往研究报道了毛囊表皮神经嵴干细胞在周围神经修复中的巨大潜力,但其炎症调节作用在面神经修复研究中鲜有报道。目的:探究毛囊表皮神经嵴干细胞能否调节面神经损伤后早期局部肿瘤坏死因子α和白细胞介素4表达水平,以促进面神经功能和形态恢复。方法:提取4 d龄SD大鼠毛囊表皮神经嵴干细胞进行培养、鉴定。取54只成年雄性SD大鼠制备面神经干缺损自体静脉导管桥接模型,随机等分为生理盐水组、DMEM组和毛囊表皮神经嵴干细胞组。通过免疫蛋白印迹、免疫组化、免疫荧光观察术后4-14 d肿瘤坏死因子α和白细胞介素4表达水平。对术后12周大鼠进行面神经功能评分,并行苏木精-伊红染色观察面神经形态。结果与结论:(1)毛囊表皮神经嵴干细胞中Nestin和p75NTR双阳性表达,细胞纯度>90%;(2)与其他两组相比,毛囊表皮神经嵴干细胞组的肿瘤坏死因子α表达在术后7 d减弱(P<0.05),而白细胞介素4表达在术后3,7,14 d均增强(P<0.05);(3)与其他两组相比,毛囊表皮神经嵴干细胞组的面神经功能改善(P<0.05);(4)面神经移植段均可见新生血管和再生轴突,与其他两组相比,毛囊表皮神经嵴干细胞组移植段和移植远段的神经纤维排列更有序、包绕的髓鞘更厚;(5)结果表明:毛囊表皮神经嵴干细胞对面神经损伤后修复早期局部肿瘤坏死因子α和白细胞介素4表达具有调节作用,可抑制局部炎症反应,并促进面神经功能和形态恢复。 展开更多
关键词 面神经 神经再生 毛囊 表皮神经嵴干细胞 炎症因子 肿瘤坏死因子α 白细胞介素4
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部