The present study was designed to determine microtubule-associated protein-2 and synaptophysin expression in the hippocampal CA3 region in a rat model of middle cerebral artery occlusion. The rats were treated with ac...The present study was designed to determine microtubule-associated protein-2 and synaptophysin expression in the hippocampal CA3 region in a rat model of middle cerebral artery occlusion. The rats were treated with acupuncture at Baihui (GV 20), Qubin (GB 7), and Qianding (GV 21) points, in addition to exercise training. Results were compared with rats undergoing exercise training only. The Y-maze method and immunohistochemistry revealed decreased error frequency of passing through Y-maze, as well as significantly increased microtubule-associated protein-2 and synaptophysin expression, in the acupuncture with exercise training group compared with the model and exercise training groups after 5 weeks. Microtubule-associated protein-2 and synaptophysin expressions negatively correlated with error frequency of passing through the Y-maze. These results suggested that acupuncture combined with exercise training improved learning and memory functions in a rat model of cerebral infarction. The mechanisms of action were hypothesized to be associated with dendritic or synaptic plasticity in the ipsilateral hippocampal CA3 region.展开更多
Recent evidence has suggested the neuroprotective effects of physical exercise on cerebral ischemic injury. However, the role of physical exercise in cerebral ischemia-induced hippocampal damage remains controversial....Recent evidence has suggested the neuroprotective effects of physical exercise on cerebral ischemic injury. However, the role of physical exercise in cerebral ischemia-induced hippocampal damage remains controversial. The aim of the present study was to evaluate the effects of pre-ischemia treadmill training on hippocampal CA1 neuronal damage after cerebral ischemia. Male adult rats were randomly divided into control, ischemia and exercise + ischemia groups. In the exercise + ischemia group, rats were subjected to running on a treadmill in a designated time schedule(5 days per week for 4 weeks). Then rats underwent cerebral ischemia induction th rough occlusion of common carotids followed by reperfusion. At 4 days after cerebral ischemia, rat learning and memory abilities were evaluated using passive avoidance memory test and rat hippocampal neuronal damage was detected using Nissl and TUNEL staining. Pre-ischemic exercise significantly reduced the number of TUNEL-positive cells and necrotic cell death in the hippocampal CA1 region as compared to the ischemia group. Moreover, pre-ischemic exercise significantly prevented ischemia-induced memory dysfunction. Pre-ischemic exercise mighct prevent memory deficits after cerebral ischemia through rescuing hippocampal CA1 neurons from ischemia-induced degeneration.展开更多
文摘The present study was designed to determine microtubule-associated protein-2 and synaptophysin expression in the hippocampal CA3 region in a rat model of middle cerebral artery occlusion. The rats were treated with acupuncture at Baihui (GV 20), Qubin (GB 7), and Qianding (GV 21) points, in addition to exercise training. Results were compared with rats undergoing exercise training only. The Y-maze method and immunohistochemistry revealed decreased error frequency of passing through Y-maze, as well as significantly increased microtubule-associated protein-2 and synaptophysin expression, in the acupuncture with exercise training group compared with the model and exercise training groups after 5 weeks. Microtubule-associated protein-2 and synaptophysin expressions negatively correlated with error frequency of passing through the Y-maze. These results suggested that acupuncture combined with exercise training improved learning and memory functions in a rat model of cerebral infarction. The mechanisms of action were hypothesized to be associated with dendritic or synaptic plasticity in the ipsilateral hippocampal CA3 region.
基金supported by a grant(under the contract number 91052159)sponsored by the Iran National Science Foundation(INSF)
文摘Recent evidence has suggested the neuroprotective effects of physical exercise on cerebral ischemic injury. However, the role of physical exercise in cerebral ischemia-induced hippocampal damage remains controversial. The aim of the present study was to evaluate the effects of pre-ischemia treadmill training on hippocampal CA1 neuronal damage after cerebral ischemia. Male adult rats were randomly divided into control, ischemia and exercise + ischemia groups. In the exercise + ischemia group, rats were subjected to running on a treadmill in a designated time schedule(5 days per week for 4 weeks). Then rats underwent cerebral ischemia induction th rough occlusion of common carotids followed by reperfusion. At 4 days after cerebral ischemia, rat learning and memory abilities were evaluated using passive avoidance memory test and rat hippocampal neuronal damage was detected using Nissl and TUNEL staining. Pre-ischemic exercise significantly reduced the number of TUNEL-positive cells and necrotic cell death in the hippocampal CA1 region as compared to the ischemia group. Moreover, pre-ischemic exercise significantly prevented ischemia-induced memory dysfunction. Pre-ischemic exercise mighct prevent memory deficits after cerebral ischemia through rescuing hippocampal CA1 neurons from ischemia-induced degeneration.