Parkinson’s disease is a neurogenerative disorder and it is difficult to diagnose as no therapies may slow down its progression.This paper contributes a novel analytic system for Parkinson’s Disease Prediction mecha...Parkinson’s disease is a neurogenerative disorder and it is difficult to diagnose as no therapies may slow down its progression.This paper contributes a novel analytic system for Parkinson’s Disease Prediction mechanism using Improved Radial Basis Function Neural Network(IRBFNN).Particle swarm optimization(PSO)with K-means is used to find the hidden neuron’s centers to improve the accuracy of IRBFNN.The performance of RBFNN is seriously affected by the centers of hidden neurons.Conventionally K-means was used to find the centers of hidden neurons.The problem of sensitiveness to the random initial centroid in K-means degrades the performance of RBFNN.Thus,a metaheuristic algorithm called PSO integrated with K-means alleviates initial random centroid and computes optimal centers for hidden neurons in IRBFNN.The IRBFNN uses Particle swarm optimization K-means to find the centers of hidden neurons and the PSO K-means was designed to evaluate the fitness measures such as Intracluster distance and Intercluster distance.Experimentation have been performed on three Parkinson’s datasets obtained from the UCI repository.The proposed IRBFNN is compared with other variations of RBFNN,conventional machine learning algorithms and other Parkinson’s Disease prediction algorithms.The proposed IRBFNN achieves an accuracy of 98.73%,98.47%and 99.03%for three Parkinson’s datasets taken for experimentation.The experimental results show that IRBFNN maximizes the accuracy in predicting Parkinson’s disease with minimum root mean square error.展开更多
Purpose–The purpose of this paper is to provide an effective and simple technique to structural damage identification,particularly to identify a crack in a structure.Artificial neural networks approach is an alternat...Purpose–The purpose of this paper is to provide an effective and simple technique to structural damage identification,particularly to identify a crack in a structure.Artificial neural networks approach is an alternative to identify the extent and location of the damage over the classical methods.Radial basis function(RBF)networks are good at function mapping and generalization ability among the various neural network approaches.RBF neural networks are chosen for the present study of crack identification.Design/methodology/approach–Analyzing the vibration response of a structure is an effective way to monitor its health and even to detect the damage.A novel two-stage improved radial basis function(IRBF)neural network methodology with conventional RBF in the first stage and a reduced search space moving technique in the second stage is proposed to identify the crack in a cantilever beam structure in the frequency domain.Latin hypercube sampling(LHS)technique is used in both stages to sample the frequency modal patterns to train the proposed network.Study is also conducted with and without addition of 5%white noise to the input patterns to simulate the experimental errors.Findings–The results show a significant improvement in identifying the location and magnitude of a crack by the proposed IRBF method,in comparison with conventional RBF method and other classical methods.In case of crack location in a beam,the average identification error over 12 test cases was 0.69 per cent by IRBF network compared to 4.88 per cent by conventional RBF.Similar improvements are reported when compared to hybrid CPN BPN networks.It also requires much less computational effort as compared to other hybrid neural network approaches and classical methods.Originality/value–The proposed novel IRBF crack identification technique is unique in originality and not reported elsewhere.It can identify the crack location and crack depth with very good accuracy,less computational effort and ease of implementation.展开更多
文摘Parkinson’s disease is a neurogenerative disorder and it is difficult to diagnose as no therapies may slow down its progression.This paper contributes a novel analytic system for Parkinson’s Disease Prediction mechanism using Improved Radial Basis Function Neural Network(IRBFNN).Particle swarm optimization(PSO)with K-means is used to find the hidden neuron’s centers to improve the accuracy of IRBFNN.The performance of RBFNN is seriously affected by the centers of hidden neurons.Conventionally K-means was used to find the centers of hidden neurons.The problem of sensitiveness to the random initial centroid in K-means degrades the performance of RBFNN.Thus,a metaheuristic algorithm called PSO integrated with K-means alleviates initial random centroid and computes optimal centers for hidden neurons in IRBFNN.The IRBFNN uses Particle swarm optimization K-means to find the centers of hidden neurons and the PSO K-means was designed to evaluate the fitness measures such as Intracluster distance and Intercluster distance.Experimentation have been performed on three Parkinson’s datasets obtained from the UCI repository.The proposed IRBFNN is compared with other variations of RBFNN,conventional machine learning algorithms and other Parkinson’s Disease prediction algorithms.The proposed IRBFNN achieves an accuracy of 98.73%,98.47%and 99.03%for three Parkinson’s datasets taken for experimentation.The experimental results show that IRBFNN maximizes the accuracy in predicting Parkinson’s disease with minimum root mean square error.
文摘Purpose–The purpose of this paper is to provide an effective and simple technique to structural damage identification,particularly to identify a crack in a structure.Artificial neural networks approach is an alternative to identify the extent and location of the damage over the classical methods.Radial basis function(RBF)networks are good at function mapping and generalization ability among the various neural network approaches.RBF neural networks are chosen for the present study of crack identification.Design/methodology/approach–Analyzing the vibration response of a structure is an effective way to monitor its health and even to detect the damage.A novel two-stage improved radial basis function(IRBF)neural network methodology with conventional RBF in the first stage and a reduced search space moving technique in the second stage is proposed to identify the crack in a cantilever beam structure in the frequency domain.Latin hypercube sampling(LHS)technique is used in both stages to sample the frequency modal patterns to train the proposed network.Study is also conducted with and without addition of 5%white noise to the input patterns to simulate the experimental errors.Findings–The results show a significant improvement in identifying the location and magnitude of a crack by the proposed IRBF method,in comparison with conventional RBF method and other classical methods.In case of crack location in a beam,the average identification error over 12 test cases was 0.69 per cent by IRBF network compared to 4.88 per cent by conventional RBF.Similar improvements are reported when compared to hybrid CPN BPN networks.It also requires much less computational effort as compared to other hybrid neural network approaches and classical methods.Originality/value–The proposed novel IRBF crack identification technique is unique in originality and not reported elsewhere.It can identify the crack location and crack depth with very good accuracy,less computational effort and ease of implementation.