A characteristic of neurological disorders is the loss of critical populations of cells that the body is unable to replace,thus there has been much interest in identifying methods of generating clinically relevant num...A characteristic of neurological disorders is the loss of critical populations of cells that the body is unable to replace,thus there has been much interest in identifying methods of generating clinically relevant numbers of cells to replace those that have been damaged or lost.The process of neural direct conversion,in which cells of one lineage are converted into cells of a neural lineage without first inducing pluripotency,shows great potential,with evidence of the generation of a range of functional neural cell types both in vitro and in vivo,through viral and non-viral delivery of exogenous factors,as well as chemical induction methods.Induced neural cells have been proposed as an attractive alternative to neural cells derived from embryonic or induced pluripotent stem cells,with prospective roles in the investigation of neurological disorders,including neurodegenerative disease modelling,drug screening,and cellular replacement for regenerative medicine applications,however further investigations into improving the efficacy and safety of these methods need to be performed before neural direct conversion becomes a clinically viable option.In this review,we describe the generation of diverse neural cell types via direct conversion of somatic cells,with comparison against stem cell-based approaches,as well as discussion of their potential research and clinical applications.展开更多
Substance P is an endogenous neurokinin that is present in the central and peripheral nervous systems. The neuropeptide substance P and its high-affinity receptor neurokinin 1 receptor are known to play an important r...Substance P is an endogenous neurokinin that is present in the central and peripheral nervous systems. The neuropeptide substance P and its high-affinity receptor neurokinin 1 receptor are known to play an important role in the central nervous system in inflammation, blood pressure, motor behavior and anxiety. The effects of substance P in the hippocampus and the marginal di- vision of the striatum on memory remain poorly understood. Compared with the hippocampus as a control, immunofluorescence showed high expression of the substance P receptor, neuro- kinin 1, in the marginal division of the striatum of normal rats. Unilateral or bilateral injection of an antisense oligonucleotide against neurokinin 1 receptor mRNA in the rat hippocampus or marginal division of the striatum effectively reduced neurokinin 1 receptor expression. Indepen- dent of injection site, rats that received this antisense oligonucleotide showed obviously increased footshock times in a Y-maze test. These results indicate that the marginal division of the striatum plays a similar function in learning and memory to the hippocampus, which is a valuable addi- tion to our mechanistic understanding of the learning and memory functions of the marginal division of the striatum.展开更多
In recent years,deep neural network has achieved great success in solving many natural language processing tasks.Particularly,substantial progress has been made on neural text generation,which takes the linguistic and...In recent years,deep neural network has achieved great success in solving many natural language processing tasks.Particularly,substantial progress has been made on neural text generation,which takes the linguistic and non-linguistic input,and generates natural language text.This survey aims to provide an up-to-date synthesis of core tasks in neural text generation and the architectures adopted to handle these tasks,and draw attention to the challenges in neural text generation.We first outline the mainstream neural text generation frameworks,and then introduce datasets,advanced models and challenges of four core text generation tasks in detail,including AMR-to-text generation,data-to-text generation,and two text-to-text generation tasks(i.e.,text summarization and paraphrase generation).Finally,we present future research directions for neural text generation.This survey can be used as a guide and reference for researchers and practitioners in this area.展开更多
基金Supported by The Charles Sturt University Writing Up Award
文摘A characteristic of neurological disorders is the loss of critical populations of cells that the body is unable to replace,thus there has been much interest in identifying methods of generating clinically relevant numbers of cells to replace those that have been damaged or lost.The process of neural direct conversion,in which cells of one lineage are converted into cells of a neural lineage without first inducing pluripotency,shows great potential,with evidence of the generation of a range of functional neural cell types both in vitro and in vivo,through viral and non-viral delivery of exogenous factors,as well as chemical induction methods.Induced neural cells have been proposed as an attractive alternative to neural cells derived from embryonic or induced pluripotent stem cells,with prospective roles in the investigation of neurological disorders,including neurodegenerative disease modelling,drug screening,and cellular replacement for regenerative medicine applications,however further investigations into improving the efficacy and safety of these methods need to be performed before neural direct conversion becomes a clinically viable option.In this review,we describe the generation of diverse neural cell types via direct conversion of somatic cells,with comparison against stem cell-based approaches,as well as discussion of their potential research and clinical applications.
基金supported by the National Natural Science Foundation of China,No.30600797,30873238
文摘Substance P is an endogenous neurokinin that is present in the central and peripheral nervous systems. The neuropeptide substance P and its high-affinity receptor neurokinin 1 receptor are known to play an important role in the central nervous system in inflammation, blood pressure, motor behavior and anxiety. The effects of substance P in the hippocampus and the marginal di- vision of the striatum on memory remain poorly understood. Compared with the hippocampus as a control, immunofluorescence showed high expression of the substance P receptor, neuro- kinin 1, in the marginal division of the striatum of normal rats. Unilateral or bilateral injection of an antisense oligonucleotide against neurokinin 1 receptor mRNA in the rat hippocampus or marginal division of the striatum effectively reduced neurokinin 1 receptor expression. Indepen- dent of injection site, rats that received this antisense oligonucleotide showed obviously increased footshock times in a Y-maze test. These results indicate that the marginal division of the striatum plays a similar function in learning and memory to the hippocampus, which is a valuable addi- tion to our mechanistic understanding of the learning and memory functions of the marginal division of the striatum.
基金the National Natural Science Foundation of China(Grant No.61772036)the Key Laboratory of Science,Technology and Standard in Press Industry(Key Laboratory of Intelligent Press Media Technology)。
文摘In recent years,deep neural network has achieved great success in solving many natural language processing tasks.Particularly,substantial progress has been made on neural text generation,which takes the linguistic and non-linguistic input,and generates natural language text.This survey aims to provide an up-to-date synthesis of core tasks in neural text generation and the architectures adopted to handle these tasks,and draw attention to the challenges in neural text generation.We first outline the mainstream neural text generation frameworks,and then introduce datasets,advanced models and challenges of four core text generation tasks in detail,including AMR-to-text generation,data-to-text generation,and two text-to-text generation tasks(i.e.,text summarization and paraphrase generation).Finally,we present future research directions for neural text generation.This survey can be used as a guide and reference for researchers and practitioners in this area.