A novel neural network based on iterated unscented Kalman filter (IUKF) algorithm is established to model and com- pensate for the fiber optic gyro (FOG) bias drift caused by temperature. In the network, FOG tempe...A novel neural network based on iterated unscented Kalman filter (IUKF) algorithm is established to model and com- pensate for the fiber optic gyro (FOG) bias drift caused by temperature. In the network, FOG temperature and its gradient are set as input and the FOG bias drift is set as the expected output. A 2-5-1 network trained with IUKF algorithm is established. The IUKF algorithm is developed on the basis of the unscented Kalman filter (UKF). The weight and bias vectors of the hidden layer are set as the state of the UKF and its process and measurement equations are deduced according to the network architecture. To solve the unavoidable estimation deviation of the mean and covariance of the states in the UKF algorithm, iterative computation is introduced into the UKF after the measurement update. While the measure- ment noise R is extended into the state vectors before iteration in order to meet the statistic orthogonality of estimate and mea- surement noise. The IUKF algorithm can provide the optimized estimation for the neural network because of its state expansion and iteration. Temperature rise (-20-20℃) and drop (70-20℃) tests for FOG are carried out in an attemperator. The temperature drift model is built with neural network, and it is trained respectively with BP, UKF and IUKF algorithms. The results prove that the proposed model has higher precision compared with the back- propagation (BP) and UKF network models.展开更多
A new thermal ring-opening polymerization technique for 1, 1, 3, 3-tetra-ph enyl-1, 3-disilacyclobutane (TPDC) based on the use of metal nanoparticles produced by pulsed laser ablation was investigated. This method ...A new thermal ring-opening polymerization technique for 1, 1, 3, 3-tetra-ph enyl-1, 3-disilacyclobutane (TPDC) based on the use of metal nanoparticles produced by pulsed laser ablation was investigated. This method facilitates the synthesis of polydiphenysilylenemethyle (PDPhSM) thin film, which is difficult to make by conventional methods because of its insolubility and high melting point. TPDC was first evaporated on silicon substrates and then exposed to metal nanoparticles deposition by pulsed laser ablation prior to heat treatment.The TPDC films with metal nanoparticles were heated in an electric furnace in air atmosphere to induce ring-opening polymerization of TPDC. The film thicknesses before and after polymerization were measured by a stylus profilometer. Since the polymerization process competes with re-evaporation of TPDC during the heating, the thickness ratio of the polymer to the monomer was defined as the polymerization efficiency, which depends greatly on the technology conditions. Therefore, a well trained radial base function neural network model was constructed to approach the complex nonlinear relationship. Moreover, a particle swarm algorithm was firstly introduced to search for an optimum technology directly from RBF neural network model. This ensures that the fabrication of thin film with appropriate properties using pulsed laser ablation requires no in-depth understanding of the entire behavior of the technology conditions.展开更多
A developmental research has been carried out to deal with the high performance of Cu-Cr-Zr-Mg lead frame alloy by artificial neural network (ANN). Using the cold working to assist in the aging hardening can improve t...A developmental research has been carried out to deal with the high performance of Cu-Cr-Zr-Mg lead frame alloy by artificial neural network (ANN). Using the cold working to assist in the aging hardening can improve the the hardness and electrical conductivity properties of Cu-Cr-Zr-Mg lead frame alloy. This paper studies the effect of different extent of cold working on the aging properties by a supervised ANN to model the non-linear relationship between processing parameters and the properties. The back-propagation (BP) training algorithm is improved by Levenberg-Marquardt algorithm. A basic repository on the domain knowledge of cold worked aging processes is established via sufficient data mining by the network. The predicted values of the ANN coincide well with the tested data. So an important foundation has been laid for prediction and optimum controlling the rolling and aging properties of Cu-Cr-Zr-Mg alloy.展开更多
This paper presents a back-propagation neural network model for sound quality prediction (BPNN-SQP) of multiple working conditions’ vehicle interior noise. According to the standards and regulations, four kinds of ve...This paper presents a back-propagation neural network model for sound quality prediction (BPNN-SQP) of multiple working conditions’ vehicle interior noise. According to the standards and regulations, four kinds of vehicle interior noises under operating conditions, including idle, constant speed, accelerating and braking, are acquired. The objective psychoacoustic parameters and subjective annoyance results are respectively used as the input and output of the BPNN-SQP model. With correlation analysis and significance test, some psychoacoustic parameters, such as loudness, A-weighted sound pressure level, roughness, articulation index and sharpness, are selected for modeling. The annoyance values of unknown noise samples estimated by the BPNN-SQP model are highly correlated with the subjective annoyances. Conclusion can be drawn that the proposed BPNN-SQP model has good generalization ability and can be applied in sound quality prediction of vehicle interior noise under multiple working conditions.展开更多
“Open community” has aroused widespread concern and research. This paper focuses on the system analysis research of the problem that based on statistics including the regression equation fitting function and mathema...“Open community” has aroused widespread concern and research. This paper focuses on the system analysis research of the problem that based on statistics including the regression equation fitting function and mathematical theory, combined with the actual effect of camera measurement method, Prim’s algorithm and neural network to “Open community” and the applicable conditions. Research results show that with the increasing number of roads within the district, the benefit time gradually increased, but each type of district capacity is different.展开更多
A recent trend in machine learning is to use deep architectures to discover multiple levels of features from data,which has achieved impressive results on various natural language processing(NLP)tasks.We propose a dee...A recent trend in machine learning is to use deep architectures to discover multiple levels of features from data,which has achieved impressive results on various natural language processing(NLP)tasks.We propose a deep neural network-based solution to Chinese semantic role labeling(SRL)with its application on message analysis.The solution adopts a six-step strategy:text normalization,named entity recognition(NER),Chinese word segmentation and part-of-speech(POS)tagging,theme classification,SRL,and slot filling.For each step,a novel deep neural network-based model is designed and optimized,particularly for smart phone applications.Experiment results on all the NLP sub-tasks of the solution show that the proposed neural networks achieve state-of-the-art performance with the minimal computational cost.The speed advantage of deep neural networks makes them more competitive for large-scale applications or applications requiring real-time response,highlighting the potential of the proposed solution for practical NLP systems.展开更多
The interaction energy of two molecules system plays a critical role in analyzing the interacting effect in molecular dynamic simulation.Since the limitation of quantum mechanics calculating resources,the interaction ...The interaction energy of two molecules system plays a critical role in analyzing the interacting effect in molecular dynamic simulation.Since the limitation of quantum mechanics calculating resources,the interaction energy based on quantum mechanics can not be merged into molecular dynamic simulation for a long time scale.A deep learning framework,deep tensor neural network,is applied to predict the interaction energy of three organic related systems within the quantum mechanics level of accuracy.The geometric structure and atomic types of molecular conformation,as the data descriptors,are applied as the network inputs to predict the interaction energy in the system.The neural network is trained with the hierarchically generated conformations data set.The complex tensor hidden layers are simplified and trained in the optimization process.The predicted results of different molecular sys tems indica te that deep t ensor neural net work is capable to predic t the interaction energy with 1 kcal/mol of the mean absolute error in a relatively short time.The prediction highly improves the efficiency of interaction energy calculation.The whole proposed framework provides new insights to introducing deep learning technology into the interaction energy calculation.展开更多
In recent years,deep learning models represented by convolutional neural networks have shown incomparable advantages in image recognition and have been widely used in various fields.In the diagnosis of sucker-rod pump...In recent years,deep learning models represented by convolutional neural networks have shown incomparable advantages in image recognition and have been widely used in various fields.In the diagnosis of sucker-rod pump working conditions,due to the lack of a large-scale dynamometer card data set,the advantages of a deep convolutional neural network are not well reflected,and its application is limited.Therefore,this paper proposes an intelligent diagnosis method of the working conditions in sucker-rod pump wells based on transfer learning,which is used to solve the problem of too few samples in a dynamometer card data set.Based on the dynamometer cards measured in oilfields,image classification and preprocessing are conducted,and a dynamometer card data set including 10 typical working conditions is created.On this basis,using a trained deep convolutional neural network learning model,model training and parameter optimization are conducted,and the learned deep dynamometer card features are transferred and applied so as to realize the intelligent diagnosis of dynamometer cards.The experimental results show that transfer learning is feasible,and the performance of the deep convolutional neural network is better than that of the shallow convolutional neural network and general fully connected neural network.The deep convolutional neural network can effectively and accurately diagnose the working conditions of sucker-rod pump wells and provide an effective method to solve the problem of few samples in dynamometer card data sets.展开更多
Based on the neural network technique, this paper proposes a BP neural network model which integrates geological factors which affect top coal caving in a comprehensive index. The index of top coal caving may be used ...Based on the neural network technique, this paper proposes a BP neural network model which integrates geological factors which affect top coal caving in a comprehensive index. The index of top coal caving may be used to forecast the mining cost of working faces, which shows the model’s potential prospect of applications.展开更多
This paper introduces the principle for recognition of engine work wave signal with neural network. A diagnosis method for recognizing engine trouble by its work wave is proposed. The designing process is illustrated ...This paper introduces the principle for recognition of engine work wave signal with neural network. A diagnosis method for recognizing engine trouble by its work wave is proposed. The designing process is illustrated by diagnosing the voltage trouble of the fuel injector of an electronic control (EC) engine.展开更多
基金supported by the National Natural Science Foundation of China(6110418440904018)+3 种基金the National Key Scientific Instrument and Equipment Development Project(2011YQ12004502)the Research Foundation of General Armament Department(201300000008)the Doctor Innovation Fund of Naval University of Engineering(HGBSCXJJ2011008)the Youth Natural Science Foundation of Naval University of Engineering(HGDQNJJ12028)
文摘A novel neural network based on iterated unscented Kalman filter (IUKF) algorithm is established to model and com- pensate for the fiber optic gyro (FOG) bias drift caused by temperature. In the network, FOG temperature and its gradient are set as input and the FOG bias drift is set as the expected output. A 2-5-1 network trained with IUKF algorithm is established. The IUKF algorithm is developed on the basis of the unscented Kalman filter (UKF). The weight and bias vectors of the hidden layer are set as the state of the UKF and its process and measurement equations are deduced according to the network architecture. To solve the unavoidable estimation deviation of the mean and covariance of the states in the UKF algorithm, iterative computation is introduced into the UKF after the measurement update. While the measure- ment noise R is extended into the state vectors before iteration in order to meet the statistic orthogonality of estimate and mea- surement noise. The IUKF algorithm can provide the optimized estimation for the neural network because of its state expansion and iteration. Temperature rise (-20-20℃) and drop (70-20℃) tests for FOG are carried out in an attemperator. The temperature drift model is built with neural network, and it is trained respectively with BP, UKF and IUKF algorithms. The results prove that the proposed model has higher precision compared with the back- propagation (BP) and UKF network models.
基金Funded by the Zhejiang Provincial Natural Science Foundation of China(No.R405031)Jiaxing Science Planning Project(2009 2007)the Educa-tion Department of Zhejiang Province (No.20051441)
文摘A new thermal ring-opening polymerization technique for 1, 1, 3, 3-tetra-ph enyl-1, 3-disilacyclobutane (TPDC) based on the use of metal nanoparticles produced by pulsed laser ablation was investigated. This method facilitates the synthesis of polydiphenysilylenemethyle (PDPhSM) thin film, which is difficult to make by conventional methods because of its insolubility and high melting point. TPDC was first evaporated on silicon substrates and then exposed to metal nanoparticles deposition by pulsed laser ablation prior to heat treatment.The TPDC films with metal nanoparticles were heated in an electric furnace in air atmosphere to induce ring-opening polymerization of TPDC. The film thicknesses before and after polymerization were measured by a stylus profilometer. Since the polymerization process competes with re-evaporation of TPDC during the heating, the thickness ratio of the polymer to the monomer was defined as the polymerization efficiency, which depends greatly on the technology conditions. Therefore, a well trained radial base function neural network model was constructed to approach the complex nonlinear relationship. Moreover, a particle swarm algorithm was firstly introduced to search for an optimum technology directly from RBF neural network model. This ensures that the fabrication of thin film with appropriate properties using pulsed laser ablation requires no in-depth understanding of the entire behavior of the technology conditions.
基金supported by National High Technical Research and Development Programme of China(No.2002AA331112)supported by the Doctorate Foundation of Northwestern Polytechnical University.
文摘A developmental research has been carried out to deal with the high performance of Cu-Cr-Zr-Mg lead frame alloy by artificial neural network (ANN). Using the cold working to assist in the aging hardening can improve the the hardness and electrical conductivity properties of Cu-Cr-Zr-Mg lead frame alloy. This paper studies the effect of different extent of cold working on the aging properties by a supervised ANN to model the non-linear relationship between processing parameters and the properties. The back-propagation (BP) training algorithm is improved by Levenberg-Marquardt algorithm. A basic repository on the domain knowledge of cold worked aging processes is established via sufficient data mining by the network. The predicted values of the ANN coincide well with the tested data. So an important foundation has been laid for prediction and optimum controlling the rolling and aging properties of Cu-Cr-Zr-Mg alloy.
文摘This paper presents a back-propagation neural network model for sound quality prediction (BPNN-SQP) of multiple working conditions’ vehicle interior noise. According to the standards and regulations, four kinds of vehicle interior noises under operating conditions, including idle, constant speed, accelerating and braking, are acquired. The objective psychoacoustic parameters and subjective annoyance results are respectively used as the input and output of the BPNN-SQP model. With correlation analysis and significance test, some psychoacoustic parameters, such as loudness, A-weighted sound pressure level, roughness, articulation index and sharpness, are selected for modeling. The annoyance values of unknown noise samples estimated by the BPNN-SQP model are highly correlated with the subjective annoyances. Conclusion can be drawn that the proposed BPNN-SQP model has good generalization ability and can be applied in sound quality prediction of vehicle interior noise under multiple working conditions.
文摘“Open community” has aroused widespread concern and research. This paper focuses on the system analysis research of the problem that based on statistics including the regression equation fitting function and mathematical theory, combined with the actual effect of camera measurement method, Prim’s algorithm and neural network to “Open community” and the applicable conditions. Research results show that with the increasing number of roads within the district, the benefit time gradually increased, but each type of district capacity is different.
文摘A recent trend in machine learning is to use deep architectures to discover multiple levels of features from data,which has achieved impressive results on various natural language processing(NLP)tasks.We propose a deep neural network-based solution to Chinese semantic role labeling(SRL)with its application on message analysis.The solution adopts a six-step strategy:text normalization,named entity recognition(NER),Chinese word segmentation and part-of-speech(POS)tagging,theme classification,SRL,and slot filling.For each step,a novel deep neural network-based model is designed and optimized,particularly for smart phone applications.Experiment results on all the NLP sub-tasks of the solution show that the proposed neural networks achieve state-of-the-art performance with the minimal computational cost.The speed advantage of deep neural networks makes them more competitive for large-scale applications or applications requiring real-time response,highlighting the potential of the proposed solution for practical NLP systems.
基金This work was supported by the National Natural Science Foundation of China(No.21933010 to Guo-hui Li).
文摘The interaction energy of two molecules system plays a critical role in analyzing the interacting effect in molecular dynamic simulation.Since the limitation of quantum mechanics calculating resources,the interaction energy based on quantum mechanics can not be merged into molecular dynamic simulation for a long time scale.A deep learning framework,deep tensor neural network,is applied to predict the interaction energy of three organic related systems within the quantum mechanics level of accuracy.The geometric structure and atomic types of molecular conformation,as the data descriptors,are applied as the network inputs to predict the interaction energy in the system.The neural network is trained with the hierarchically generated conformations data set.The complex tensor hidden layers are simplified and trained in the optimization process.The predicted results of different molecular sys tems indica te that deep t ensor neural net work is capable to predic t the interaction energy with 1 kcal/mol of the mean absolute error in a relatively short time.The prediction highly improves the efficiency of interaction energy calculation.The whole proposed framework provides new insights to introducing deep learning technology into the interaction energy calculation.
文摘In recent years,deep learning models represented by convolutional neural networks have shown incomparable advantages in image recognition and have been widely used in various fields.In the diagnosis of sucker-rod pump working conditions,due to the lack of a large-scale dynamometer card data set,the advantages of a deep convolutional neural network are not well reflected,and its application is limited.Therefore,this paper proposes an intelligent diagnosis method of the working conditions in sucker-rod pump wells based on transfer learning,which is used to solve the problem of too few samples in a dynamometer card data set.Based on the dynamometer cards measured in oilfields,image classification and preprocessing are conducted,and a dynamometer card data set including 10 typical working conditions is created.On this basis,using a trained deep convolutional neural network learning model,model training and parameter optimization are conducted,and the learned deep dynamometer card features are transferred and applied so as to realize the intelligent diagnosis of dynamometer cards.The experimental results show that transfer learning is feasible,and the performance of the deep convolutional neural network is better than that of the shallow convolutional neural network and general fully connected neural network.The deep convolutional neural network can effectively and accurately diagnose the working conditions of sucker-rod pump wells and provide an effective method to solve the problem of few samples in dynamometer card data sets.
文摘Based on the neural network technique, this paper proposes a BP neural network model which integrates geological factors which affect top coal caving in a comprehensive index. The index of top coal caving may be used to forecast the mining cost of working faces, which shows the model’s potential prospect of applications.
文摘This paper introduces the principle for recognition of engine work wave signal with neural network. A diagnosis method for recognizing engine trouble by its work wave is proposed. The designing process is illustrated by diagnosing the voltage trouble of the fuel injector of an electronic control (EC) engine.
文摘针对工业环境中广泛在多工况下多滚动轴承实时状态监测的需求和部署环境受限的挑战,提出一种基于卷积神经网络(Convolutional Neural Network,CNN)的面向多传感器滚动轴承运行状态监控方法。该方法将两个不同工况下的一维时间序列数据集以均方根(Root Mean Square,RMS)指标标注,并通过将一维时间序列多传感器数据重构为二维空间张量的形式输入卷积神经网络训练。最后利用层融合和16比特量化优化,将网络部署到FPGA上,用以解决CNN的计算开销。实验结果表明,在结合了两种不同工况的数据集下,网络测试推理准确度依然高达99.24%,比多层感知机实现高10.48%,比多层感知机结合支持向量机的实现高2.91%,该算法对于新加入的数据集也有较强的鲁棒性,经过重训练,新加入的数据集准确率可以达到99.17%。基于FPGA部署优化的网络的峰值能效为76.217GPOS/W,为CPU实现的33.09倍,GPU实现的5.39倍。其中,16比特精度部署的网络测试精度相较32比特精度实现仅降低0.001%。