期刊文献+
共找到611篇文章
< 1 2 31 >
每页显示 20 50 100
IUKF neural network modeling for FOG temperature drift 被引量:4
1
作者 Feng Zha Jiangning Xu +1 位作者 Jingshu Li Hongyang He 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第5期838-844,共7页
A novel neural network based on iterated unscented Kalman filter (IUKF) algorithm is established to model and com- pensate for the fiber optic gyro (FOG) bias drift caused by temperature. In the network, FOG tempe... A novel neural network based on iterated unscented Kalman filter (IUKF) algorithm is established to model and com- pensate for the fiber optic gyro (FOG) bias drift caused by temperature. In the network, FOG temperature and its gradient are set as input and the FOG bias drift is set as the expected output. A 2-5-1 network trained with IUKF algorithm is established. The IUKF algorithm is developed on the basis of the unscented Kalman filter (UKF). The weight and bias vectors of the hidden layer are set as the state of the UKF and its process and measurement equations are deduced according to the network architecture. To solve the unavoidable estimation deviation of the mean and covariance of the states in the UKF algorithm, iterative computation is introduced into the UKF after the measurement update. While the measure- ment noise R is extended into the state vectors before iteration in order to meet the statistic orthogonality of estimate and mea- surement noise. The IUKF algorithm can provide the optimized estimation for the neural network because of its state expansion and iteration. Temperature rise (-20-20℃) and drop (70-20℃) tests for FOG are carried out in an attemperator. The temperature drift model is built with neural network, and it is trained respectively with BP, UKF and IUKF algorithms. The results prove that the proposed model has higher precision compared with the back- propagation (BP) and UKF network models. 展开更多
关键词 fiber optic gyro (FOG) temperature drift neural net- work iterated unscented Kalman filter (IUKF).
下载PDF
Optimization of Laser Ablation Technology for PDPhSM Matrix Nanocomposite Thin Film by Artificial Neural Networks-particle Swarm Algorithm 被引量:3
2
作者 唐普洪 宋仁国 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第2期188-193,共6页
A new thermal ring-opening polymerization technique for 1, 1, 3, 3-tetra-ph enyl-1, 3-disilacyclobutane (TPDC) based on the use of metal nanoparticles produced by pulsed laser ablation was investigated. This method ... A new thermal ring-opening polymerization technique for 1, 1, 3, 3-tetra-ph enyl-1, 3-disilacyclobutane (TPDC) based on the use of metal nanoparticles produced by pulsed laser ablation was investigated. This method facilitates the synthesis of polydiphenysilylenemethyle (PDPhSM) thin film, which is difficult to make by conventional methods because of its insolubility and high melting point. TPDC was first evaporated on silicon substrates and then exposed to metal nanoparticles deposition by pulsed laser ablation prior to heat treatment.The TPDC films with metal nanoparticles were heated in an electric furnace in air atmosphere to induce ring-opening polymerization of TPDC. The film thicknesses before and after polymerization were measured by a stylus profilometer. Since the polymerization process competes with re-evaporation of TPDC during the heating, the thickness ratio of the polymer to the monomer was defined as the polymerization efficiency, which depends greatly on the technology conditions. Therefore, a well trained radial base function neural network model was constructed to approach the complex nonlinear relationship. Moreover, a particle swarm algorithm was firstly introduced to search for an optimum technology directly from RBF neural network model. This ensures that the fabrication of thin film with appropriate properties using pulsed laser ablation requires no in-depth understanding of the entire behavior of the technology conditions. 展开更多
关键词 nanocomposite thin film pulsed laser deposition(PLD) artificial neural net- works(ANN) particle swarm optimization (PSO)
下载PDF
EFFECT OF COLD WORKING ON THE AGING PROPERTIES OF Cu-Cr-Zr-Mg ALLOY BY ARTIFICIAL NEURAL NETWORK 被引量:10
3
作者 J.H.Su H.J.Li +3 位作者 Q.M.Dong P.Liu B.X.Kang B.H.Tian 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2004年第5期741-746,共6页
A developmental research has been carried out to deal with the high performance of Cu-Cr-Zr-Mg lead frame alloy by artificial neural network (ANN). Using the cold working to assist in the aging hardening can improve t... A developmental research has been carried out to deal with the high performance of Cu-Cr-Zr-Mg lead frame alloy by artificial neural network (ANN). Using the cold working to assist in the aging hardening can improve the the hardness and electrical conductivity properties of Cu-Cr-Zr-Mg lead frame alloy. This paper studies the effect of different extent of cold working on the aging properties by a supervised ANN to model the non-linear relationship between processing parameters and the properties. The back-propagation (BP) training algorithm is improved by Levenberg-Marquardt algorithm. A basic repository on the domain knowledge of cold worked aging processes is established via sufficient data mining by the network. The predicted values of the ANN coincide well with the tested data. So an important foundation has been laid for prediction and optimum controlling the rolling and aging properties of Cu-Cr-Zr-Mg alloy. 展开更多
关键词 Cu-Cr-Zr-Mg alloy cold working AGING artificial neural network (ANN)
下载PDF
Sound Quality Prediction of Vehicle Interior Noise under Multiple Working Conditions Using Back-Propagation Neural Network Model 被引量:1
4
作者 Zutong Duan Yansong Wang Yanfeng Xing 《Journal of Transportation Technologies》 2015年第2期134-139,共6页
This paper presents a back-propagation neural network model for sound quality prediction (BPNN-SQP) of multiple working conditions’ vehicle interior noise. According to the standards and regulations, four kinds of ve... This paper presents a back-propagation neural network model for sound quality prediction (BPNN-SQP) of multiple working conditions’ vehicle interior noise. According to the standards and regulations, four kinds of vehicle interior noises under operating conditions, including idle, constant speed, accelerating and braking, are acquired. The objective psychoacoustic parameters and subjective annoyance results are respectively used as the input and output of the BPNN-SQP model. With correlation analysis and significance test, some psychoacoustic parameters, such as loudness, A-weighted sound pressure level, roughness, articulation index and sharpness, are selected for modeling. The annoyance values of unknown noise samples estimated by the BPNN-SQP model are highly correlated with the subjective annoyances. Conclusion can be drawn that the proposed BPNN-SQP model has good generalization ability and can be applied in sound quality prediction of vehicle interior noise under multiple working conditions. 展开更多
关键词 Multiple working Conditions neural Network BACK-PROPAGATION SOUND Quality PREDICTION ANNOYANCE
下载PDF
Residential Community Open-Up Strategy Based on Prim’s Algorithm and Neural Network Algorithm
5
作者 Ximing Lv Ang Li +1 位作者 Shunkai Zhang Jianbao Li 《Journal of Applied Mathematics and Physics》 2017年第2期551-567,共17页
“Open community” has aroused widespread concern and research. This paper focuses on the system analysis research of the problem that based on statistics including the regression equation fitting function and mathema... “Open community” has aroused widespread concern and research. This paper focuses on the system analysis research of the problem that based on statistics including the regression equation fitting function and mathematical theory, combined with the actual effect of camera measurement method, Prim’s algorithm and neural network to “Open community” and the applicable conditions. Research results show that with the increasing number of roads within the district, the benefit time gradually increased, but each type of district capacity is different. 展开更多
关键词 Open COMMUNITY Regression Analysis Prim’s ALGORITHM GRAPH Theory neural net-work ALGORITHM
下载PDF
Deep Neural Network-Based Chinese Semantic Role Labeling
6
作者 ZHENG Xiaoqing CHEN Jun SHANG Guoqiang 《ZTE Communications》 2017年第B12期58-64,共7页
A recent trend in machine learning is to use deep architectures to discover multiple levels of features from data,which has achieved impressive results on various natural language processing(NLP)tasks.We propose a dee... A recent trend in machine learning is to use deep architectures to discover multiple levels of features from data,which has achieved impressive results on various natural language processing(NLP)tasks.We propose a deep neural network-based solution to Chinese semantic role labeling(SRL)with its application on message analysis.The solution adopts a six-step strategy:text normalization,named entity recognition(NER),Chinese word segmentation and part-of-speech(POS)tagging,theme classification,SRL,and slot filling.For each step,a novel deep neural network-based model is designed and optimized,particularly for smart phone applications.Experiment results on all the NLP sub-tasks of the solution show that the proposed neural networks achieve state-of-the-art performance with the minimal computational cost.The speed advantage of deep neural networks makes them more competitive for large-scale applications or applications requiring real-time response,highlighting the potential of the proposed solution for practical NLP systems. 展开更多
关键词 DEEP learning SEQUENCE LABELING natural language under.standing convolutional neural network RECURRENT neural net.work
下载PDF
Interaction Energy Prediction of Organic Molecules using Deep Tensor Neural Network
7
作者 Yuan Qi Hong Ren +6 位作者 Hong Li Ding-lin Zhang Hong-qiang Cui Jun-ben Weng Guo-hui Li Gui-yan Wang Yan Li 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2021年第1期112-124,I0012,共14页
The interaction energy of two molecules system plays a critical role in analyzing the interacting effect in molecular dynamic simulation.Since the limitation of quantum mechanics calculating resources,the interaction ... The interaction energy of two molecules system plays a critical role in analyzing the interacting effect in molecular dynamic simulation.Since the limitation of quantum mechanics calculating resources,the interaction energy based on quantum mechanics can not be merged into molecular dynamic simulation for a long time scale.A deep learning framework,deep tensor neural network,is applied to predict the interaction energy of three organic related systems within the quantum mechanics level of accuracy.The geometric structure and atomic types of molecular conformation,as the data descriptors,are applied as the network inputs to predict the interaction energy in the system.The neural network is trained with the hierarchically generated conformations data set.The complex tensor hidden layers are simplified and trained in the optimization process.The predicted results of different molecular sys tems indica te that deep t ensor neural net work is capable to predic t the interaction energy with 1 kcal/mol of the mean absolute error in a relatively short time.The prediction highly improves the efficiency of interaction energy calculation.The whole proposed framework provides new insights to introducing deep learning technology into the interaction energy calculation. 展开更多
关键词 Deep tensor neural net work Interac tion energy Organic molecules
下载PDF
An Intelligent Diagnosis Method of the Working Conditions in Sucker-Rod Pump Wells Based on Convolutional Neural Networks and Transfer Learning
8
作者 Ruichao Zhang Liqiang Wang Dechun Chen 《Energy Engineering》 EI 2021年第4期1069-1082,共14页
In recent years,deep learning models represented by convolutional neural networks have shown incomparable advantages in image recognition and have been widely used in various fields.In the diagnosis of sucker-rod pump... In recent years,deep learning models represented by convolutional neural networks have shown incomparable advantages in image recognition and have been widely used in various fields.In the diagnosis of sucker-rod pump working conditions,due to the lack of a large-scale dynamometer card data set,the advantages of a deep convolutional neural network are not well reflected,and its application is limited.Therefore,this paper proposes an intelligent diagnosis method of the working conditions in sucker-rod pump wells based on transfer learning,which is used to solve the problem of too few samples in a dynamometer card data set.Based on the dynamometer cards measured in oilfields,image classification and preprocessing are conducted,and a dynamometer card data set including 10 typical working conditions is created.On this basis,using a trained deep convolutional neural network learning model,model training and parameter optimization are conducted,and the learned deep dynamometer card features are transferred and applied so as to realize the intelligent diagnosis of dynamometer cards.The experimental results show that transfer learning is feasible,and the performance of the deep convolutional neural network is better than that of the shallow convolutional neural network and general fully connected neural network.The deep convolutional neural network can effectively and accurately diagnose the working conditions of sucker-rod pump wells and provide an effective method to solve the problem of few samples in dynamometer card data sets. 展开更多
关键词 Sucker-rod pump well dynamometer card convolutional neural network transfer learning working condition diagnosis
下载PDF
Research on Feasibility of Top-Coal Caving Based on Neural Network Technique
9
作者 王家臣 吴志山 +2 位作者 冯士伟 沈掌旺 侯社伟 《Journal of China University of Mining and Technology》 2001年第1期10-13,共4页
Based on the neural network technique, this paper proposes a BP neural network model which integrates geological factors which affect top coal caving in a comprehensive index. The index of top coal caving may be used ... Based on the neural network technique, this paper proposes a BP neural network model which integrates geological factors which affect top coal caving in a comprehensive index. The index of top coal caving may be used to forecast the mining cost of working faces, which shows the model’s potential prospect of applications. 展开更多
关键词 top coal caving neural network mining cost of working face
下载PDF
An Intelligent System for Recognition of the Work Wave of an EC Engine Based on a Neural Network
10
作者 WEI Shao-yuan,LU Xiao-li Liaoning Institute of Technology, Liaoning 121001, P. R. China 《International Journal of Plant Engineering and Management》 2002年第2期105-109,共5页
This paper introduces the principle for recognition of engine work wave signal with neural network. A diagnosis method for recognizing engine trouble by its work wave is proposed. The designing process is illustrated ... This paper introduces the principle for recognition of engine work wave signal with neural network. A diagnosis method for recognizing engine trouble by its work wave is proposed. The designing process is illustrated by diagnosing the voltage trouble of the fuel injector of an electronic control (EC) engine. 展开更多
关键词 neural network (NN) EC engine work wave recognition
下载PDF
基于FMCW雷达的人体生命体征信号预测算法 被引量:1
11
作者 杨路 雷雨霄 余翔 《雷达科学与技术》 北大核心 2024年第1期43-56,共14页
将FMCW雷达检测到的人体生命体征信号,用于预测未来一段时间内人体生命体征信号是否异常,具有明显的应用价值。该方向当前研究主要针对如何进一步降低重构误差、提升生命体征信号的预测精度。为此,本文提出一种自适应变分模态分解-长短... 将FMCW雷达检测到的人体生命体征信号,用于预测未来一段时间内人体生命体征信号是否异常,具有明显的应用价值。该方向当前研究主要针对如何进一步降低重构误差、提升生命体征信号的预测精度。为此,本文提出一种自适应变分模态分解-长短期记忆神经网络的生命体征信号预测方法。针对静止状态下的人体,通过雷达采集到的生命体征信号,采用粒子群算法优化变分模态分解VMD的模态分量个数K和惩罚系数α的值,实现自适应选取后用于VMD分解,再将分解后的模态分量进行叠加重构。采用粒子群算法优化长短期记忆网络模型中的网络层数、学习率、正则化系数等3个参数,自适应选取合适的参数组合,将重构后的信号通过优化后的LSTM网络进行预测。实验结果显示本文所提预测方法在10位志愿者的预测结果与原始数据的均方根误差平均值为0.017 188 9,平均绝对误差的平均值为0.007 158,相较于当前其他研究,预测精度上有明显提升。 展开更多
关键词 生命体征信号预测 变分模态分解 长短期记忆递归网络 粒子群算法
下载PDF
基于边缘辅助和多尺度Transformer的无参考屏幕内容图像质量评估
12
作者 陈羽中 陈友昆 +1 位作者 林闽沪 牛玉贞 《电子学报》 EI CAS CSCD 北大核心 2024年第7期2242-2256,共15页
与从现实场景中拍摄的自然图像不同,屏幕内容图像是一种合成图像,通常由计算机生成的文本、图形和动画等各种多媒体形式组合而成.现有评估方法通常未能充分考虑图像边缘结构信息和全局上下文信息对屏幕内容图像质量感知的影响.为解决上... 与从现实场景中拍摄的自然图像不同,屏幕内容图像是一种合成图像,通常由计算机生成的文本、图形和动画等各种多媒体形式组合而成.现有评估方法通常未能充分考虑图像边缘结构信息和全局上下文信息对屏幕内容图像质量感知的影响.为解决上述问题,本文提出一种基于边缘辅助和多尺度Transformer的无参考屏幕内容图像质量评估模型.首先,使用高斯拉普拉斯算子构造由失真屏幕内容图像高频信息组成的边缘结构图,然后通过卷积神经网络(Convolutional Neural Network,CNN)对输入的失真屏幕内容图像和相应的边缘结构图进行多尺度的特征提取与融合,以图像的边缘结构信息为模型训练提供额外的信息增益.此外,本文进一步构建了基于Transformer的多尺度特征编码模块,从而在CNN获得的局部特征基础上更好地建模不同尺度图像和边缘特征的全局上下文信息.实验结果表明,本文提出的方法在指标上优于其他现有的无参考和全参考屏幕内容图像质量评估方法,能够取得更高的主客观视觉感知一致性. 展开更多
关键词 无参考屏幕内容图像质量评估 高斯拉普拉斯算子 卷积神经网络 TRANSFORMER 多尺度特征
下载PDF
联合图像层级特征的压缩感知迭代重构
13
作者 刘玉红 杨恒 《光学精密工程》 EI CAS CSCD 北大核心 2024年第14期2311-2324,共14页
基于卷积神经网络(Convolutional Neural Networks,CNN)的图像压缩感知重构算法难以捕捉高分辨率图像的长距离依赖关系,采用Transformer虽能解决该问题,但网络参数量和图像重构时间成倍增长。基于此,本文提出了一种联合图像层级特征的... 基于卷积神经网络(Convolutional Neural Networks,CNN)的图像压缩感知重构算法难以捕捉高分辨率图像的长距离依赖关系,采用Transformer虽能解决该问题,但网络参数量和图像重构时间成倍增长。基于此,本文提出了一种联合图像层级特征的压缩感知迭代重构网络(Combining Image Hierarchical-Feature Network,CHFNet),在提高图像重构质量的同时减少重构时间。CHFNet由采样和重构两个子网络组成,采样子网络通过可学习的采样矩阵为重构过程提供更有效的测量值。在重构子网络中,设计了一种使用梯度下降操作和特征优化操作的迭代策略,同时提出一种轻量级CNN-Transformer混合架构,能够建模并优化高细粒度的图像层级特征,在增强网络感知能力的同时降低计算复杂度。此外,CHFNet通过联合优化学习采样重构,实现了完整的端到端训练。实验结果表明,所提算法在多个公共基准数据集上取得了良好的重构效果。在Urban100数据集上,相较于现有最优算法CSformer,平均PSNR,SSIM分别提升0.63 dB和0.0076;在0.10采样率下,相较CSformer在Set11,BSD68和Urban100数据集上的平均重构时间分别减少了2.7447 s,3.5510 s和4.7750 s。 展开更多
关键词 压缩感知 图像层级特征 TRANSFORMER 卷积神经网络 迭代策略 图像重构
下载PDF
基于混合神经网络的多维视觉传感信号模式分类
14
作者 陈威 蔡奕侨 《传感技术学报》 CAS CSCD 北大核心 2024年第6期1035-1040,共6页
传感器采集的数字信号分类精度差,导致关键信息的丢失。为了提高传感数据的可靠性和有效性,提出基于混合神经网络的多维视觉传感信号模式分类方法。结合卷积神经网络(CNN)、循环神经网络(RNN)构建混合神经网络,以更有效地表示多维视觉... 传感器采集的数字信号分类精度差,导致关键信息的丢失。为了提高传感数据的可靠性和有效性,提出基于混合神经网络的多维视觉传感信号模式分类方法。结合卷积神经网络(CNN)、循环神经网络(RNN)构建混合神经网络,以更有效地表示多维视觉数据中的特征;其中,卷积神经网络负责对多维的空间信号进行去噪处理并提取特征;循环神经网络负责对时域和频域信号进行特征提取;混合神经网络通过联合训练CNN和RNN各自的参数,以调整其权重,并且结合两者从不同层级提取的特征来实现多维视觉传感信号模式的分类。仿真结果表明,使用所提方法进行分类时,信号光滑度保持在0.9以上,传感信号分类结果与实际结果拟合度较高,有效实现多维视觉传感信号模式分类。 展开更多
关键词 传感器信号处理 信号模式分类 混合神经网络 视觉传感信号 卷积神经网络 循环神经网络 贝塞尔曲线
下载PDF
融合信息瓶颈与图卷积的跨域推荐算法
15
作者 王永贵 胡鹏程 +2 位作者 时启文 赵炀 邹赫宇 《计算机工程与应用》 CSCD 北大核心 2024年第15期77-90,共14页
基于迁移学习的跨域推荐可以有效地学习连接源域和目标域的映射函数,但其性能仍然受到表征质量不高和负迁移问题的影响,不能有效地为冷启动用户进行推荐,为此提出了一种融合信息瓶颈与图卷积网络的跨域推荐模型(IBGC)。利用图卷积神经... 基于迁移学习的跨域推荐可以有效地学习连接源域和目标域的映射函数,但其性能仍然受到表征质量不高和负迁移问题的影响,不能有效地为冷启动用户进行推荐,为此提出了一种融合信息瓶颈与图卷积网络的跨域推荐模型(IBGC)。利用图卷积神经网络聚合有关联的用户-用户和项目-项目信息;利用注意力机制学习用户和项目偏好,以提高节点特征表示质量;考虑到两个领域的信息交互,将重叠用户进行嵌入表示的同时限制特定信息的编码,利用信息瓶颈理论设计了三种正则化器,以捕获域内和跨域用户-项目的相关性,并将不同领域的重叠用户表征对齐以解决负迁移问题。在Amazon数据集中的四对公开数据集上进行实验,实验结果表明该模型在MRR、HR@K和NDCG@K三个推荐性能指标上的表现均优于基线模型,在四对数据集上与最优对比基线模型相比,MRR平均提升34.36%,HR@10平均提升34.94%,NDCG@10平均提升36.83%,证明了IBGC模型的有效性。 展开更多
关键词 跨域推荐算法 用户冷启动推荐 图卷积神经网络 信息瓶颈理论 网络嵌入学习 注意力机制
下载PDF
轻量级Transformer的双向交互近红外手指静脉图像识别
16
作者 陶志勇 高亚静 +1 位作者 王萌 林森 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第5期621-628,共8页
针对现有手指静脉识别算法速度慢、复杂度高以及Transformer架构在小数据集上效果不佳的问题,提出轻量级Transformer的双向交互识别方法 .利用轻量级卷积神经网络与改进的Transformer架构组成并行主干网络,用于近红外手指静脉图像的局... 针对现有手指静脉识别算法速度慢、复杂度高以及Transformer架构在小数据集上效果不佳的问题,提出轻量级Transformer的双向交互识别方法 .利用轻量级卷积神经网络与改进的Transformer架构组成并行主干网络,用于近红外手指静脉图像的局部和全局特征提取;设计交互结构,在并行结构的基础上,以交互方式融合两条分支上不同尺度的特征.为最大程度地保留近红外图像的局部特征和全局表示,将两条分支提取的信息拼接融合,通过输出层得出识别结果 .结果表明,该算法在多个数据集上的最高识别率可达99.77%,参数量仅1.33 MB.相较于其他指静脉算法,以及改进的Transformer架构,在保持高准确率的同时进一步降低了算法的复杂度. 展开更多
关键词 卷积神经网络 指静脉识别 近红外图像 轻量级网络 特征提取
下载PDF
基于卷积神经网络的多工况多传感滚动轴承实时监控方法
17
作者 陈昌川 朱嘉琪 +3 位作者 魏琦 尹淑娟 乔飞 赵超莹 《传感技术学报》 CAS CSCD 北大核心 2024年第7期1162-1171,共10页
针对工业环境中广泛在多工况下多滚动轴承实时状态监测的需求和部署环境受限的挑战,提出一种基于卷积神经网络(Convolutional Neural Network,CNN)的面向多传感器滚动轴承运行状态监控方法。该方法将两个不同工况下的一维时间序列数据... 针对工业环境中广泛在多工况下多滚动轴承实时状态监测的需求和部署环境受限的挑战,提出一种基于卷积神经网络(Convolutional Neural Network,CNN)的面向多传感器滚动轴承运行状态监控方法。该方法将两个不同工况下的一维时间序列数据集以均方根(Root Mean Square,RMS)指标标注,并通过将一维时间序列多传感器数据重构为二维空间张量的形式输入卷积神经网络训练。最后利用层融合和16比特量化优化,将网络部署到FPGA上,用以解决CNN的计算开销。实验结果表明,在结合了两种不同工况的数据集下,网络测试推理准确度依然高达99.24%,比多层感知机实现高10.48%,比多层感知机结合支持向量机的实现高2.91%,该算法对于新加入的数据集也有较强的鲁棒性,经过重训练,新加入的数据集准确率可以达到99.17%。基于FPGA部署优化的网络的峰值能效为76.217GPOS/W,为CPU实现的33.09倍,GPU实现的5.39倍。其中,16比特精度部署的网络测试精度相较32比特精度实现仅降低0.001%。 展开更多
关键词 滚动轴承 多工况 卷积神经网络 FPGA 部署优化
下载PDF
变工况下动态卷积域对抗图神经网络故障诊断
18
作者 王桐 王晨程 +2 位作者 邰宇 欧阳敏 陈立伟 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第7期1406-1414,共9页
针对基于无监督域自适应故障诊断方法忽略了域间数据结构信息、传统域对齐平均最大差异法全局泛化能力差等问题,本文提出一种基于无监督域自适应理论的动态卷积域对抗图神经网络故障诊断模型,分别通过对数据的类别标签、域标签和数据结... 针对基于无监督域自适应故障诊断方法忽略了域间数据结构信息、传统域对齐平均最大差异法全局泛化能力差等问题,本文提出一种基于无监督域自适应理论的动态卷积域对抗图神经网络故障诊断模型,分别通过对数据的类别标签、域标签和数据结构信息进行建模。通过分类器和域鉴别器分别建模类别标签和域标签,通过图神经网络将数据结构信息嵌入到实例图节点中,利用高斯Wasserstein距离来度量不同领域的实例图之间的差异。本文对比了不同工况下共14种迁移任务在各模型下故障识别的准确率。实验结果表明:基于动态卷积的域对抗图神经网络模型在变工况下的故障诊断效果均优于其他对比模型,且模型性能稳定。 展开更多
关键词 无监督域自适应 动态卷积 域对抗 图神经网络 图生成 高斯Wasserstein距离 故障诊断 变工况
下载PDF
基于多神经网络的可展开网状天线型面调整方法
19
作者 苏冠龙 马小飞 +5 位作者 范叶森 郑士昆 李洋 李团结 李欢笑 林坤阳 《中国空间科学技术(中英文)》 CSCD 北大核心 2024年第2期51-58,共8页
为在提高可展开网状天线型面精度的同时减少型面调整的工作量,提出了一种基于多神经网络的型面调整方法。通过分析新型张拉网状天线型面与调整索相关性与耦合机制,首次提出了型面调整策略。以10m口径的新型张拉网状天线为例进行了数值... 为在提高可展开网状天线型面精度的同时减少型面调整的工作量,提出了一种基于多神经网络的型面调整方法。通过分析新型张拉网状天线型面与调整索相关性与耦合机制,首次提出了型面调整策略。以10m口径的新型张拉网状天线为例进行了数值仿真研究,调整后型面的均方根值从5.4×10^(-3)m降低到1.1×10^(-3)m,从而验证了方法的有效性。 展开更多
关键词 神经网络 网状天线 型面精度 型面耦合 型面调整
下载PDF
基于贝叶斯神经网络的相位梯度计算方法
20
作者 张康洋 倪梓浩 +1 位作者 董博 白玉磊 《中国光学(中英文)》 EI CAS CSCD 北大核心 2024年第4期842-851,共10页
应变重构是相衬光学相干层析力学性能表征中的关键步骤,其需要准确计算出差分包裹相位的梯度分布。为了能够解决强噪声干扰下的相位梯度重构信噪比低的难题,提出了一种基于贝叶斯神经网络的相位梯度计算方法。首先,通过计算机模拟不同... 应变重构是相衬光学相干层析力学性能表征中的关键步骤,其需要准确计算出差分包裹相位的梯度分布。为了能够解决强噪声干扰下的相位梯度重构信噪比低的难题,提出了一种基于贝叶斯神经网络的相位梯度计算方法。首先,通过计算机模拟不同散斑噪声等级下的包裹相位图,并生成相应的理想相位梯度,以构建网络的训练集。其次,基于网络训练集采用贝叶斯推断理论学习强噪声环境下的包裹相位与相位梯度的“端到端”映射关系。最后,将相衬光学相干层析测量的差分包裹相位结果送入贝叶斯神经网络进行处理,实现高信噪比相位梯度预测。此外,通过借助贝叶斯神经网络的统计特性,以模型不确定度来定量评估相位梯度预测结果的可靠性。通过数值实验和三点弯曲力学加载实验对比分析了本文方法和主流矢量方法的性能。实验结果表明:在噪声较小的条件下,本文方法重构的相位梯度信噪比可提升8%;在噪声较强条件下,本文方法能成功恢复因相位条纹难以分辨而无法计算的相位梯度。此外,模型不确定度能够定量分析网络的相位梯度预测误差。可以预见,在样品形变复杂且先验信息未知的条件下,本工作为相衬光学相干层析提供了一种有效的应变重构方法,从而能实现高质量和高可靠的内部力学性能表征。 展开更多
关键词 光学相干层析成像 相衬技术 相位梯度计算 贝叶斯神经网络 形变测量
下载PDF
上一页 1 2 31 下一页 到第
使用帮助 返回顶部