期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
An Intelligent Tree Extractive Text Summarization Deep Learning
1
作者 Abeer Abdulaziz AlArfaj Hanan Ahmed Hosni Mahmoud 《Computers, Materials & Continua》 SCIE EI 2022年第11期4231-4244,共14页
In recent research,deep learning algorithms have presented effective representation learning models for natural languages.The deep learningbased models create better data representation than classical models.They are ... In recent research,deep learning algorithms have presented effective representation learning models for natural languages.The deep learningbased models create better data representation than classical models.They are capable of automated extraction of distributed representation of texts.In this research,we introduce a new tree Extractive text summarization that is characterized by fitting the text structure representation in knowledge base training module,and also addresses memory issues that were not addresses before.The proposed model employs a tree structured mechanism to generate the phrase and text embedding.The proposed architecture mimics the tree configuration of the text-texts and provide better feature representation.It also incorporates an attention mechanism that offers an additional information source to conduct better summary extraction.The novel model addresses text summarization as a classification process,where the model calculates the probabilities of phrase and text-summary association.The model classification is divided into multiple features recognition such as information entropy,significance,redundancy and position.The model was assessed on two datasets,on the Multi-Doc Composition Query(MCQ)and Dual Attention Composition dataset(DAC)dataset.The experimental results prove that our proposed model has better summarization precision vs.other models by a considerable margin. 展开更多
关键词 neural network architecture text structure abstractive summarization
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部