期刊文献+
共找到11,137篇文章
< 1 2 250 >
每页显示 20 50 100
Finite-time Prescribed Performance Time-Varying Formation Control for Second-Order Multi-Agent Systems With Non-Strict Feedback Based on a Neural Network Observer
1
作者 Chi Ma Dianbiao Dong 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期1039-1050,共12页
This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eli... This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm. 展开更多
关键词 Finite-time control multi-agent systems neural network prescribed performance control time-varying formation control
下载PDF
A Fractional-Order Ultra-Local Model-Based Adaptive Neural Network Sliding Mode Control of n-DOF Upper-Limb Exoskeleton With Input Deadzone
2
作者 Dingxin He HaoPing Wang +1 位作者 Yang Tian Yida Guo 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期760-781,共22页
This paper proposes an adaptive neural network sliding mode control based on fractional-order ultra-local model for n-DOF upper-limb exoskeleton in presence of uncertainties,external disturbances and input deadzone.Co... This paper proposes an adaptive neural network sliding mode control based on fractional-order ultra-local model for n-DOF upper-limb exoskeleton in presence of uncertainties,external disturbances and input deadzone.Considering the model complexity and input deadzone,a fractional-order ultra-local model is proposed to formulate the original dynamic system for simple controller design.Firstly,the control gain of ultra-local model is considered as a constant.The fractional-order sliding mode technique is designed to stabilize the closed-loop system,while fractional-order time-delay estimation is combined with neural network to estimate the lumped disturbance.Correspondingly,a fractional-order ultra-local model-based neural network sliding mode controller(FO-NNSMC) is proposed.Secondly,to avoid disadvantageous effect of improper gain selection on the control performance,the control gain of ultra-local model is considered as an unknown parameter.Then,the Nussbaum technique is introduced into the FO-NNSMC to deal with the stability problem with unknown gain.Correspondingly,a fractional-order ultra-local model-based adaptive neural network sliding mode controller(FO-ANNSMC) is proposed.Moreover,the stability analysis of the closed-loop system with the proposed method is presented by using the Lyapunov theory.Finally,with the co-simulations on virtual prototype of 7-DOF iReHave upper-limb exoskeleton and experiments on 2-DOF upper-limb exoskeleton,the obtained compared results illustrate the effectiveness and superiority of the proposed method. 展开更多
关键词 Adaptive control input deadzone model-free control n-DOF upper-limb exoskeleton neural network
下载PDF
An intelligent control method based on artificial neural network for numerical flight simulation of the basic finner projectile with pitching maneuver
3
作者 Yiming Liang Guangning Li +3 位作者 Min Xu Junmin Zhao Feng Hao Hongbo Shi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期663-674,共12页
In this paper,an intelligent control method applying on numerical virtual flight is proposed.The proposed algorithm is verified and evaluated by combining with the case of the basic finner projectile model and shows a... In this paper,an intelligent control method applying on numerical virtual flight is proposed.The proposed algorithm is verified and evaluated by combining with the case of the basic finner projectile model and shows a good application prospect.Firstly,a numerical virtual flight simulation model based on overlapping dynamic mesh technology is constructed.In order to verify the accuracy of the dynamic grid technology and the calculation of unsteady flow,a numerical simulation of the basic finner projectile without control is carried out.The simulation results are in good agreement with the experiment data which shows that the algorithm used in this paper can also be used in the design and evaluation of the intelligent controller in the numerical virtual flight simulation.Secondly,combined with the real-time control requirements of aerodynamic,attitude and displacement parameters of the projectile during the flight process,the numerical simulations of the basic finner projectile’s pitch channel are carried out under the traditional PID(Proportional-Integral-Derivative)control strategy and the intelligent PID control strategy respectively.The intelligent PID controller based on BP(Back Propagation)neural network can realize online learning and self-optimization of control parameters according to the acquired real-time flight parameters.Compared with the traditional PID controller,the concerned control variable overshoot,rise time,transition time and steady state error and other performance indicators have been greatly improved,and the higher the learning efficiency or the inertia coefficient,the faster the system,the larger the overshoot,and the smaller the stability error.The intelligent control method applying on numerical virtual flight is capable of solving the complicated unsteady motion and flow with the intelligent PID control strategy and has a strong promotion to engineering application. 展开更多
关键词 Numerical virtual flight Intelligent control BP neural network PID Moving chimera grid
下载PDF
Time-varying parameters estimation with adaptive neural network EKF for missile-dual control system
4
作者 YUAN Yuqi ZHOU Di +1 位作者 LI Junlong LOU Chaofei 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期451-462,共12页
In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LST... In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LSTM) neural network is nested into the extended Kalman filter(EKF) to modify the Kalman gain such that the filtering performance is improved in the presence of large model uncertainties. To avoid the unstable network output caused by the abrupt changes of system states,an adaptive correction factor is introduced to correct the network output online. In the process of training the network, a multi-gradient descent learning mode is proposed to better fit the internal state of the system, and a rolling training is used to implement an online prediction logic. Based on the Lyapunov second method, we discuss the stability of the system, the result shows that when the training error of neural network is sufficiently small, the system is asymptotically stable. With its application to the estimation of time-varying parameters of a missile dual control system, the LSTM-EKF shows better filtering performance than the EKF and adaptive EKF(AEKF) when there exist large uncertainties in the system model. 展开更多
关键词 long-short-term memory(LSTM)neural network extended Kalman filter(EKF) rolling training time-varying parameters estimation missile dual control system
下载PDF
A fuzzy control and neural network based rotor speed controller for maximum power point tracking in permanent magnet synchronous wind power generation system 被引量:1
5
作者 Min Ding Zili Tao +3 位作者 Bo Hu Meng Ye Yingxiong Ou Ryuichi Yokoyama 《Global Energy Interconnection》 EI CSCD 2023年第5期554-566,共13页
When the wind speed changes significantly in a permanent magnet synchronous wind power generation system,the maximum power point cannot be easily determined in a timely manner.This study proposes a maximum power refer... When the wind speed changes significantly in a permanent magnet synchronous wind power generation system,the maximum power point cannot be easily determined in a timely manner.This study proposes a maximum power reference signal search method based on fuzzy control,which is an improvement to the climbing search method.A neural network-based parameter regulator is proposed to address external wind speed fluctuations,where the parameters of a proportional-integral controller is adjusted to accurately monitor the maximum power point under different wind speed conditions.Finally,the effectiveness of this method is verified via Simulink simulation. 展开更多
关键词 Maximum wind power tracking Fuzzy control neural network
下载PDF
Trajectory tracking guidance of interceptor via prescribed performance integral sliding mode with neural network disturbance observer 被引量:1
6
作者 Wenxue Chen Yudong Hu +1 位作者 Changsheng Gao Ruoming An 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期412-429,共18页
This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance system... This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots. 展开更多
关键词 BP network neural Integral sliding mode control(ISMC) Missile defense Prescribed performance function(PPF) State observer Tracking guidance system
下载PDF
Ultimately Bounded Output Feedback Control for Networked Nonlinear Systems With Unreliable Communication Channel: A Buffer-Aided Strategy
7
作者 Yuhan Zhang Zidong Wang +2 位作者 Lei Zou Yun Chen Guoping Lu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第7期1566-1578,共13页
This paper concerns ultimately bounded output-feedback control problems for networked systems with unknown nonlinear dynamics. Sensor-to-observer signal transmission is facilitated over networks that has communication... This paper concerns ultimately bounded output-feedback control problems for networked systems with unknown nonlinear dynamics. Sensor-to-observer signal transmission is facilitated over networks that has communication constraints.These transmissions are carried out over an unreliable communication channel. In order to enhance the utilization rate of measurement data, a buffer-aided strategy is novelly employed to store historical measurements when communication networks are inaccessible. Using the neural network technique, a novel observer-based controller is introduced to address effects of signal transmission behaviors and unknown nonlinear dynamics.Through the application of stochastic analysis and Lyapunov stability, a joint framework is constructed for analyzing resultant system performance under the introduced controller. Subsequently, existence conditions for the desired output-feedback controller are delineated. The required parameters for the observerbased controller are then determined by resolving some specific matrix inequalities. Finally, a simulation example is showcased to confirm method efficacy. 展开更多
关键词 Buffer-aided strategy neural networks nonlinear control output-feedback control unreliable communication channel
下载PDF
Deep Learning Social Network Access Control Model Based on User Preferences
8
作者 Fangfang Shan Fuyang Li +3 位作者 Zhenyu Wang Peiyu Ji Mengyi Wang Huifang Sun 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期1029-1044,共16页
A deep learning access controlmodel based on user preferences is proposed to address the issue of personal privacy leakage in social networks.Firstly,socialusers andsocialdata entities are extractedfromthe social netw... A deep learning access controlmodel based on user preferences is proposed to address the issue of personal privacy leakage in social networks.Firstly,socialusers andsocialdata entities are extractedfromthe social networkandused to construct homogeneous and heterogeneous graphs.Secondly,a graph neural networkmodel is designed based on user daily social behavior and daily social data to simulate the dissemination and changes of user social preferences and user personal preferences in the social network.Then,high-order neighbor nodes,hidden neighbor nodes,displayed neighbor nodes,and social data nodes are used to update user nodes to expand the depth and breadth of user preferences.Finally,a multi-layer attention network is used to classify user nodes in the homogeneous graph into two classes:allow access and deny access.The fine-grained access control problem in social networks is transformed into a node classification problem in a graph neural network.The model is validated using a dataset and compared with other methods without losing generality.The model improved accuracy by 2.18%compared to the baseline method GraphSAGE,and improved F1 score by 1.45%compared to the baseline method,verifying the effectiveness of the model. 展开更多
关键词 Graph neural networks user preferences access control social network
下载PDF
Graph neural network-based scheduling for multi-UAV-enabled communications in D2D networks
9
作者 Pei Li Lingyi Wang +3 位作者 Wei Wu Fuhui Zhou Baoyun Wang Qihui Wu 《Digital Communications and Networks》 SCIE CSCD 2024年第1期45-52,共8页
In this paper,we jointly design the power control and position dispatch for Multi-Unmanned Aerial Vehicle(UAV)-enabled communication in Device-to-Device(D2D)networks.Our objective is to maximize the total transmission... In this paper,we jointly design the power control and position dispatch for Multi-Unmanned Aerial Vehicle(UAV)-enabled communication in Device-to-Device(D2D)networks.Our objective is to maximize the total transmission rate of Downlink Users(DUs).Meanwhile,the Quality of Service(QoS)of all D2D users must be satisfied.We comprehensively considered the interference among D2D communications and downlink transmissions.The original problem is strongly non-convex,which requires high computational complexity for traditional optimization methods.And to make matters worse,the results are not necessarily globally optimal.In this paper,we propose a novel Graph Neural Networks(GNN)based approach that can map the considered system into a specific graph structure and achieve the optimal solution in a low complexity manner.Particularly,we first construct a GNN-based model for the proposed network,in which the transmission links and interference links are formulated as vertexes and edges,respectively.Then,by taking the channel state information and the coordinates of ground users as the inputs,as well as the location of UAVs and the transmission power of all transmitters as outputs,we obtain the mapping from inputs to outputs through training the parameters of GNN.Simulation results verified that the way to maximize the total transmission rate of DUs can be extracted effectively via the training on samples.Moreover,it also shows that the performance of proposed GNN-based method is better than that of traditional means. 展开更多
关键词 Unmanned aerial vehicle D2 Dcommunication Graph neural network Power control Position planning
下载PDF
Neural Dynamics for Cooperative Motion Control of Omnidirectional Mobile Manipulators in the Presence of Noises: A Distributed Approach
10
作者 Yufeng Lian Xingtian Xiao +3 位作者 Jiliang Zhang Long Jin Junzhi Yu Zhongbo Sun 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第7期1605-1620,共16页
This paper presents a distributed scheme with limited communications, aiming to achieve cooperative motion control for multiple omnidirectional mobile manipulators(MOMMs).The proposed scheme extends the existing singl... This paper presents a distributed scheme with limited communications, aiming to achieve cooperative motion control for multiple omnidirectional mobile manipulators(MOMMs).The proposed scheme extends the existing single-agent motion control to cater to scenarios involving the cooperative operation of MOMMs. Specifically, squeeze-free cooperative load transportation is achieved for the end-effectors of MOMMs by incorporating cooperative repetitive motion planning(CRMP), while guiding each individual to desired poses. Then, the distributed scheme is formulated as a time-varying quadratic programming(QP) and solved online utilizing a noise-tolerant zeroing neural network(NTZNN). Theoretical analysis shows that the NTZNN model converges globally to the optimal solution of QP in the presence of noise. Finally, the effectiveness of the control design is demonstrated by numerical simulations and physical platform experiments. 展开更多
关键词 Cooperative motion control noise-tolerant zeroing neural network(NTZNN) omnidirectional mobile manipulator(OMM) repetitive motion planning
下载PDF
Adaptive recurrent neural network for uncertainties estimation in feedback control system 被引量:1
11
作者 Adel Merabet Saikrishna Kanukollu +1 位作者 Ahmed Al-Durra Ehab F.El-Saadany 《Journal of Automation and Intelligence》 2023年第3期119-129,共11页
In this paper,a recurrent neural network(RNN)is used to estimate uncertainties and implement feedback control for nonlinear dynamic systems.The neural network approximates the uncertainties related to unmodeled dynami... In this paper,a recurrent neural network(RNN)is used to estimate uncertainties and implement feedback control for nonlinear dynamic systems.The neural network approximates the uncertainties related to unmodeled dynamics,parametric variations,and external disturbances.The RNN has a single hidden layer and uses the tracking error and the output as feedback to estimate the disturbance.The RNN weights are online adapted,and the adaptation laws are developed from the stability analysis of the controlled system with the RNN estimation.The used activation function,at the hidden layer,has an expression that simplifies the adaptation laws from the stability analysis.It is found that the adaptive RNN enhances the tracking performance of the feedback controller at the transient and steady state responses.The proposed RNN based feedback control is applied to a DC–DC converter for current regulation.Simulation and experimental results are provided to show its effectiveness.Compared to the feedforward neural network and the conventional feedback control,the RNN based feedback control provides good tracking performance. 展开更多
关键词 Feedback control Adaptive control Recurrent neural network Uncertainties estimation
下载PDF
Prediction and Analysis of Elevator Traffic Flow under the LSTM Neural Network
12
作者 Mo Shi Entao Sun +1 位作者 Xiaoyan Xu Yeol Choi 《Intelligent Control and Automation》 2024年第2期63-82,共20页
Elevators are essential components of contemporary buildings, enabling efficient vertical mobility for occupants. However, the proliferation of tall buildings has exacerbated challenges such as traffic congestion with... Elevators are essential components of contemporary buildings, enabling efficient vertical mobility for occupants. However, the proliferation of tall buildings has exacerbated challenges such as traffic congestion within elevator systems. Many passengers experience dissatisfaction with prolonged wait times, leading to impatience and frustration among building occupants. The widespread adoption of neural networks and deep learning technologies across various fields and industries represents a significant paradigm shift, and unlocking new avenues for innovation and advancement. These cutting-edge technologies offer unprecedented opportunities to address complex challenges and optimize processes in diverse domains. In this study, LSTM (Long Short-Term Memory) network technology is leveraged to analyze elevator traffic flow within a typical office building. By harnessing the predictive capabilities of LSTM, the research aims to contribute to advancements in elevator group control design, ultimately enhancing the functionality and efficiency of vertical transportation systems in built environments. The findings of this research have the potential to reference the development of intelligent elevator management systems, capable of dynamically adapting to fluctuating passenger demand and optimizing elevator usage in real-time. By enhancing the efficiency and functionality of vertical transportation systems, the research contributes to creating more sustainable, accessible, and user-friendly living environments for individuals across diverse demographics. 展开更多
关键词 Elevator Traffic Flow neural network LSTM Elevator Group control
下载PDF
Neural Network-Powered License Plate Recognition System Design
13
作者 Sakib Hasan Md Nagib Mahfuz Sunny +1 位作者 Abdullah Al Nahian Mohammad Yasin 《Engineering(科研)》 2024年第9期284-300,共17页
The development of scientific inquiry and research has yielded numerous benefits in the realm of intelligent traffic control systems, particularly in the realm of automatic license plate recognition for vehicles. The ... The development of scientific inquiry and research has yielded numerous benefits in the realm of intelligent traffic control systems, particularly in the realm of automatic license plate recognition for vehicles. The design of license plate recognition algorithms has undergone digitalization through the utilization of neural networks. In contemporary times, there is a growing demand for vehicle surveillance due to the need for efficient vehicle processing and traffic management. The design, development, and implementation of a license plate recognition system hold significant social, economic, and academic importance. The study aims to present contemporary methodologies and empirical findings pertaining to automated license plate recognition. The primary focus of the automatic license plate recognition algorithm was on image extraction, character segmentation, and recognition. The task of character segmentation has been identified as the most challenging function based on my observations. The license plate recognition project that we designed demonstrated the effectiveness of this method across various observed conditions. Particularly in low-light environments, such as during periods of limited illumination or inclement weather characterized by precipitation. The method has been subjected to testing using a sample size of fifty images, resulting in a 100% accuracy rate. The findings of this study demonstrate the project’s ability to effectively determine the optimal outcomes of simulations. 展开更多
关键词 Intelligent Traffic control Systems Automatic License Plate Recognition (ALPR) neural networks Vehicle Surveillance Traffic Management License Plate Recognition Algorithms Image Extraction Character Segmentation Character Recognition Low-Light Environments Inclement Weather Empirical Findings Algorithm Accuracy Simulation Outcomes DIGITALIZATION
下载PDF
Application of Smith Predictor Based on Single Neural Network in Cold Rolling Shape Control 被引量:15
14
作者 WANG Yiqun SUN FD +2 位作者 LIU Jian SUN Menghui XIE Yihan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第2期282-286,共5页
Flatness is one of the most important criterion factors to evaluate the quality of the steel strip. To improve the strip' s flatness quality, the most frequently used methodology is to employ the closed-loop automati... Flatness is one of the most important criterion factors to evaluate the quality of the steel strip. To improve the strip' s flatness quality, the most frequently used methodology is to employ the closed-loop automatic shape control system. However, in the shape control system, the shape-meter is always installed at the down way of the exit of the cold rolling mill and can not sense the changes of the strip flatness in the rolling gap directly. This kind of installation results in the delay of the feedback in the control system. Therefore, the stability and response performance of the system are strongly affected by the delay. At present, there is still no mature way to design controllers for systems with time delay. Although the conventional PID controller used in most practical applications has the capability to compensate the delay, the effect of the compensation is limited, especially for the systems with long time delay. Smith predictor, as a compensator for solving this problem, is now widely used in industry systems. However, the request of highly precise model of the system and the poor adaptive performance to the changes of related parameters limit the application of the Smith predictor in practice. In order to overcome the drawbacks of the Smith predictor, a new Smith predictor based on single neural network PID (SNN-PID) is proposed. Because the single neural network is employed into the Smith predictor to improve the controller's self-adaptability, the adaptive capability to the varying parameters of the system is improved. Meanwhile, for the purpose of solving the problems such as time-consuming and complicated calculation of the neural networks in real time, the learning coefficient of neural network is divided into several stages as usually done in expert control system. Therefore, the control system can obtain fast response due to the improved calculation speed of the neural networks. In order to validate the performance of the proposed controller, the experiment is conducted on the shape control system in a 300 mm four-high reversing cold rolling mill. The experimental results show that the SNN-PID with Smith predictor controller can effectively compensate the delay effects and achieve better control performance than the conventional PID controller. 展开更多
关键词 shape control time delay single neural network Smith predictor
下载PDF
Neural Network Based Robust Controller for Trajectory Tracking of Underwater Vehicles 被引量:7
15
作者 罗伟林 邹早建 《China Ocean Engineering》 SCIE EI 2007年第2期281-292,共12页
A robust neural network controller (NNC) is presented for tracking control of underwater vehicles with uncertainties. The controller is obtained by using backstepping technique and Lyapunov function design in combin... A robust neural network controller (NNC) is presented for tracking control of underwater vehicles with uncertainties. The controller is obtained by using backstepping technique and Lyapunov function design in combination with neural network identification. Modeling errors and environmental disturbances are considered in the mathematical model. A twolayer neural network is introduced to compensate the modeling errors, while H∞ control strategy is used to achieve the L2-gain performance. The uniformly ultimately bounded (UUB) stabilities of tracking errors and NN weights are guaran- teed through the proposed controller. An on-line NN weights tuning algorithm is also propesed. Good performances of the tracking control system are illustrated bv the results of numerical simulations. 展开更多
关键词 underwater vehicle trajectory tracking robust control neural network
下载PDF
Parallel Neural Network-Based Motion Controller for Autonomous Underwater Vehicles 被引量:5
16
作者 甘永 王丽荣 +1 位作者 万磊 徐玉如 《China Ocean Engineering》 SCIE EI 2005年第3期485-496,共12页
A parallel neural network-based controller (PNNC) is presented for the motion control of underwater vehicles in this paper. It consists of a real-time part, a self-learning part and a desired-state programmer, and i... A parallel neural network-based controller (PNNC) is presented for the motion control of underwater vehicles in this paper. It consists of a real-time part, a self-learning part and a desired-state programmer, and it is different from normal adaptive neural network controller in structure. Owing to the introduction of the self-learning part, on-line learning can be performed without sample data in several sample periods, resulting in high learning speed of the controller and good control performance. The desired-state programmer is utilized to obtain better learning samples of the neural network to keep the stability of the controller. The developed controller is applied to the 4-degree of freedom control of the AUV “IUV- IV” and is successful on the simulation platform. The control performance is also compared with that of neural network controller with different structures such as normal adaptive neural network and different learning methods. Current effects and surge velocity control are also included to demonstrate the controller' s performance. It is shown that the PNNC has a great possibility to solve the problems in the control system design of underwater vehicles. 展开更多
关键词 neural network autonomous underwater vehicles (AUV) parallel neural network-based controller (PNNC real-time part self-learning part
下载PDF
ARTIFICIAL NEURAL NETWORK AND FUZZY LOGIC CONTROLLER FOR GTAW MODELING AND CONTROL 被引量:3
17
作者 Gao Xiangdong Faculty of Mechanical and Electrical Engineering,Guangdong University of Technology, Guangzhou 510090,China Huang Shisheng South China University of Technology 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2002年第1期53-56,共4页
An artificial neural network(ANN) and a self-adjusting fuzzy logiccontroller(FLC) for modeling and control of gas tungsten arc welding(GTAW) process are presented.The discussion is mainly focused on the modeling and c... An artificial neural network(ANN) and a self-adjusting fuzzy logiccontroller(FLC) for modeling and control of gas tungsten arc welding(GTAW) process are presented.The discussion is mainly focused on the modeling and control of the weld pool depth with ANN and theintelligent control for weld seam tracking with FLC. The proposed neural network can produce highlycomplex nonlinear multi-variable model of the GTAW process that offers the accurate prediction ofwelding penetration depth. A self-adjusting fuzzy controller used for seam tracking adjusts thecontrol parameters on-line automatically according to the tracking errors so that the torch positioncan be controlled accurately. 展开更多
关键词 Artificial neural network Fuzzy logic control Weld pool depth Seamtracking
下载PDF
Neural-network adaptive controller for nonlinear systems and its application in pneumatic servo systems 被引量:2
18
作者 Lu LU Fagui LIU Weixiang SHI 《控制理论与应用(英文版)》 EI 2008年第1期97-103,共7页
In this paper, a novel control law is presented, which uses neural-network techniques to approximate the affine class nonlinear system having unknown or uncertain dynamics and noise disturbances. It adopts an adaptive... In this paper, a novel control law is presented, which uses neural-network techniques to approximate the affine class nonlinear system having unknown or uncertain dynamics and noise disturbances. It adopts an adaptive control law to adjust the network parameters online and adds another control component according to H-infinity control theory to attenuate the disturbance. This control law is applied to the position tracking control of pneumatic servo systems. Simulation and experimental results show that the tracking precision and convergence speed is obviously superior to the results by using the basic BP-network controller and self-tuning adaptive controller. 展开更多
关键词 Nonlinear control CONVERGENCE Adaptive control H-infinity control neural networks Pneumatic servo system
下载PDF
Application of PID Controller Based on BP Neural Network in Export Steam’s Temperature Control System 被引量:4
19
作者 朱增辉 孙慧影 《Journal of Measurement Science and Instrumentation》 CAS 2011年第1期84-87,共4页
By combining the Back-Propagation (BP) neural network with conventional proportional Integral Derivative (PID) controller, a new temperature control strategy of the export steam in supercritical electric power pla... By combining the Back-Propagation (BP) neural network with conventional proportional Integral Derivative (PID) controller, a new temperature control strategy of the export steam in supercritical electric power plant is put forward. This scheme can effectively overcome the large time delay, inertia of the export steam and the influencee of object in varying operational parameters. Thus excellent control quality is obtaitud. The present paper describes the development and application of neural network based controller to control the temperature of the boiler's export steam. Through simulation in various situations, it validates that the control quality of this control system is apparently superior to the conventional PID control system. 展开更多
关键词 PID controller based on BP neural network supercritical power unit export steam temperature large timedelay
下载PDF
Intelligent vehicle lateral control based on radial basis function neural network sliding mode controller 被引量:2
20
作者 Bailin Fan Yi Zhang +1 位作者 Ye Chen Linbei Meng 《CAAI Transactions on Intelligence Technology》 SCIE EI 2022年第3期455-468,共14页
Based on the predigestion of the dynamic model of the intelligent firefighting vehicle,a linear 2-DOF lateral dynamic model and a preview error model are established.To solve the problems of a highly non-linear vehicl... Based on the predigestion of the dynamic model of the intelligent firefighting vehicle,a linear 2-DOF lateral dynamic model and a preview error model are established.To solve the problems of a highly non-linear vehicle model,time-varying parameters,output chattering,and poor robustness,the Radial Basis Function neural network sliding mode controller is designed.Then,different driving speeds are used to conduct simulation tests under standard double-shifting and smooth curve road conditions,and the simulation results are used to analyse the tracking effect of the lateral motion controller on the desired path.The simulation results reveal that the controller designed has high accuracy in tracking the desired path and has good robustness to the disturbance of intelligent firefighting vehicle speed changes. 展开更多
关键词 artificial neural network neural control
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部