The crack fault is one of the most common faults in the rotor system,and researchers have paid close attention to its fault diagnosis.However,most studies focus on discussing the dynamic response characteristics cause...The crack fault is one of the most common faults in the rotor system,and researchers have paid close attention to its fault diagnosis.However,most studies focus on discussing the dynamic response characteristics caused by the crack rather than estimating the crack depth and position based on the obtained vibration signals.In this paper,a novel crack fault diagnosis and location method for a dual-disk hollow shaft rotor system based on the Radial basis function(RBF)network and Pattern recognition neural network(PRNN)is presented.Firstly,a rotor system model with a breathing crack suitable for a short-thick hollow shaft rotor is established based on the finite element method,where the crack's periodic opening and closing pattern and different degrees of crack depth are considered.Then,the dynamic response is obtained by the harmonic balance method.By adjusting the crack parameters,the dynamic characteristics related to the crack depth and position are analyzed through the amplitude-frequency responses and waterfall plots.The analysis results show that the first critical speed,first subcritical speed,first critical speed amplitude,and super-harmonic resonance peak at the first subcritical speed can be utilized for the crack fault diagnosis.Based on this,the RBF network and PRNN are adopted to determine the depth and approximate location of the crack respectively by taking the above dynamic characteristics as input.Test results show that the proposed method has high fault diagnosis accuracy.This research proposes a crack detection method adequate for the hollow shaft rotor system,where the crack depth and position are both unknown.展开更多
Training neural network to recognize targets needs a lot of samples.People usually get these samples in a non-systematic way,which can miss or overemphasize some target information.To improve this situation,a new meth...Training neural network to recognize targets needs a lot of samples.People usually get these samples in a non-systematic way,which can miss or overemphasize some target information.To improve this situation,a new method based on virtual model and invariant moments was proposed to generate training samples.The method was composed of the following steps:use computer and simulation software to build target object's virtual model and then simulate the environment,light condition,camera parameter,etc.;rotate the model by spin and nutation of inclination to get the image sequence by virtual camera;preprocess each image and transfer them into binary image;calculate the invariant moments for each image and get a vectors' sequence.The vectors' sequence which was proved to be complete became the training samples together with the target outputs.The simulated results showed that the proposed method could be used to recognize the real targets and improve the accuracy of target recognition effectively when the sampling interval was short enough and the circumstance simulation was close enough.展开更多
We propose a binarization method based pigment in the ZIP code of 24 bmp image simulation and digital identification by CCD sensors, were extracted the grid binary image of zip code box and message of the two characte...We propose a binarization method based pigment in the ZIP code of 24 bmp image simulation and digital identification by CCD sensors, were extracted the grid binary image of zip code box and message of the two characters binary image; analyze the image processing, which includes code frame edge detection and separation of the image binarization, denoising smoothing, tilt correction, the extraction code number, position, normalization processing, digital image thinning, character recognition feature extraction. Through testing, the recognition rate of this method can be over 90%. The recognition time of characters for character is less than 1.3 second, which means the method is of more effective recognition ability and can better satisfy the real system requirements.展开更多
This series of papers deals with vessel recognition. The project is conducted by using fuzzy neural networks and basing on the spectra of vessel radiated-noise. This paper is the last in the series. It deals with the ...This series of papers deals with vessel recognition. The project is conducted by using fuzzy neural networks and basing on the spectra of vessel radiated-noise. This paper is the last in the series. It deals with the application of fuzzy neural network to the recognition of targets. The neural network is a multi-layered forward network and the learning algorithm is BP (error Back Propagation). In the paper, the adust formula of parameter of fuzzier is given. The paper provides a recognition result which is drawn from 1049 samples gathered from 41 vessels in 63 operating conditions, with an original recording time of about 3.5 hours. The identifications are more than 92% correct.展开更多
For a vision measurement system consisted of laser-CCD scanning sensors, an algorithm is proposed to extract and recognize the target object contour. Firstly, the two-dimensional(2D) point cloud that is output by th...For a vision measurement system consisted of laser-CCD scanning sensors, an algorithm is proposed to extract and recognize the target object contour. Firstly, the two-dimensional(2D) point cloud that is output by the integrated laser sensor is transformed into a binary image. Secondly, the potential target object contours are segmented and extracted based on the connected domain labeling and adaptive corner detection. Then, the target object contour is recognized by improved Hu invariant moments and BP neural network classifier. Finally, we extract the point data of the target object contour through the reverse transformation from a binary image to a 2D point cloud. The experimental results show that the average recognition rate is 98.5% and the average recognition time is 0.18 s per frame. This algorithm realizes the real-time tracking of the target object in the complex background and the condition of multi-moving objects.展开更多
基金Supported by National Natural Science Foundation of China (Grant No.11972129)National Science and Technology Major Project of China (Grant No.2017-IV-0008-0045)+1 种基金Heilongjiang Provincial Natural Science Foundation (Grant No.YQ2022A008)the Fundamental Research Funds for the Central Universities。
文摘The crack fault is one of the most common faults in the rotor system,and researchers have paid close attention to its fault diagnosis.However,most studies focus on discussing the dynamic response characteristics caused by the crack rather than estimating the crack depth and position based on the obtained vibration signals.In this paper,a novel crack fault diagnosis and location method for a dual-disk hollow shaft rotor system based on the Radial basis function(RBF)network and Pattern recognition neural network(PRNN)is presented.Firstly,a rotor system model with a breathing crack suitable for a short-thick hollow shaft rotor is established based on the finite element method,where the crack's periodic opening and closing pattern and different degrees of crack depth are considered.Then,the dynamic response is obtained by the harmonic balance method.By adjusting the crack parameters,the dynamic characteristics related to the crack depth and position are analyzed through the amplitude-frequency responses and waterfall plots.The analysis results show that the first critical speed,first subcritical speed,first critical speed amplitude,and super-harmonic resonance peak at the first subcritical speed can be utilized for the crack fault diagnosis.Based on this,the RBF network and PRNN are adopted to determine the depth and approximate location of the crack respectively by taking the above dynamic characteristics as input.Test results show that the proposed method has high fault diagnosis accuracy.This research proposes a crack detection method adequate for the hollow shaft rotor system,where the crack depth and position are both unknown.
基金Supported by the Ministerial Level Research Foundation(404040401)
文摘Training neural network to recognize targets needs a lot of samples.People usually get these samples in a non-systematic way,which can miss or overemphasize some target information.To improve this situation,a new method based on virtual model and invariant moments was proposed to generate training samples.The method was composed of the following steps:use computer and simulation software to build target object's virtual model and then simulate the environment,light condition,camera parameter,etc.;rotate the model by spin and nutation of inclination to get the image sequence by virtual camera;preprocess each image and transfer them into binary image;calculate the invariant moments for each image and get a vectors' sequence.The vectors' sequence which was proved to be complete became the training samples together with the target outputs.The simulated results showed that the proposed method could be used to recognize the real targets and improve the accuracy of target recognition effectively when the sampling interval was short enough and the circumstance simulation was close enough.
文摘We propose a binarization method based pigment in the ZIP code of 24 bmp image simulation and digital identification by CCD sensors, were extracted the grid binary image of zip code box and message of the two characters binary image; analyze the image processing, which includes code frame edge detection and separation of the image binarization, denoising smoothing, tilt correction, the extraction code number, position, normalization processing, digital image thinning, character recognition feature extraction. Through testing, the recognition rate of this method can be over 90%. The recognition time of characters for character is less than 1.3 second, which means the method is of more effective recognition ability and can better satisfy the real system requirements.
文摘This series of papers deals with vessel recognition. The project is conducted by using fuzzy neural networks and basing on the spectra of vessel radiated-noise. This paper is the last in the series. It deals with the application of fuzzy neural network to the recognition of targets. The neural network is a multi-layered forward network and the learning algorithm is BP (error Back Propagation). In the paper, the adust formula of parameter of fuzzier is given. The paper provides a recognition result which is drawn from 1049 samples gathered from 41 vessels in 63 operating conditions, with an original recording time of about 3.5 hours. The identifications are more than 92% correct.
文摘For a vision measurement system consisted of laser-CCD scanning sensors, an algorithm is proposed to extract and recognize the target object contour. Firstly, the two-dimensional(2D) point cloud that is output by the integrated laser sensor is transformed into a binary image. Secondly, the potential target object contours are segmented and extracted based on the connected domain labeling and adaptive corner detection. Then, the target object contour is recognized by improved Hu invariant moments and BP neural network classifier. Finally, we extract the point data of the target object contour through the reverse transformation from a binary image to a 2D point cloud. The experimental results show that the average recognition rate is 98.5% and the average recognition time is 0.18 s per frame. This algorithm realizes the real-time tracking of the target object in the complex background and the condition of multi-moving objects.