期刊文献+
共找到387篇文章
< 1 2 20 >
每页显示 20 50 100
Bootstrapped Multi-Model Neural-Network Super-Ensembles for Wind Speed and Power Forecasting
1
作者 Zhongxian Men Eugene Yee +2 位作者 Fue-Sang Lien Hua Ji Yongqian Liu 《Energy and Power Engineering》 2014年第11期340-348,共9页
The bootstrap resampling method is applied to an ensemble artificial neural network (ANN) approach (which combines machine learning with physical data obtained from a numerical weather prediction model) to provide a m... The bootstrap resampling method is applied to an ensemble artificial neural network (ANN) approach (which combines machine learning with physical data obtained from a numerical weather prediction model) to provide a multi-ANN model super-ensemble for application to multi-step-ahead forecasting of wind speed and of the associated power generated from a wind turbine. A statistical combination of the individual forecasts from the various ANNs of the super-ensemble is used to construct the best deterministic forecast, as well as the prediction uncertainty interval associated with this forecast. The bootstrapped neural-network methodology is validated using measured wind speed and power data acquired from a wind turbine in an operational wind farm located in northern China. 展开更多
关键词 Artificial neural network BOOTSTRAP RESAMPLING Numerical Weather Prediction Super-Ensemble wind Speed power Forecasting
下载PDF
基于主成分分析-BP神经网络的风电备件需求预测 被引量:3
2
作者 李晓娟 张芳媛 喻玲 《科学技术与工程》 北大核心 2024年第1期281-288,共8页
风电机组具有结构复杂,运维困难,且长期处于恶劣的工作环境的特点。风电备件的需求预测有助于为风电场配备最合适的备件数,以确保风电场的平稳、高效运行。构建主成分分析-反向传播(principal component analysis-back propagation,PCA-... 风电机组具有结构复杂,运维困难,且长期处于恶劣的工作环境的特点。风电备件的需求预测有助于为风电场配备最合适的备件数,以确保风电场的平稳、高效运行。构建主成分分析-反向传播(principal component analysis-back propagation,PCA-BP)模型,针对受多因素影响的复杂备件,先利用PCA将影响风电备件的要素进行筛选,再利用BP神经网络算法,得到最为精确的预测结果。比较自回归积分滑动平均(autoregressive integrated moving average,ARIMA)模型、BP神经网络预测和PCA-BP神经网络预测的结果。结果表明:PCA能显著降低神经网络预测误差,预测的精度为93.94%,高于BP神经网络预测的88.39%和ARIMA模型的85.31%,所以PCA-BP神经网络模型的预测精度准确且有可靠结果,能够适用于风机备件的需求预测。 展开更多
关键词 主成分分析 神经网络 风电备件 需求预测
下载PDF
基于IWOA-SA-Elman神经网络的短期风电功率预测 被引量:3
3
作者 刘吉成 朱玺瑞 于晶 《太阳能学报》 EI CAS CSCD 北大核心 2024年第1期143-150,共8页
由于风力发电的随机性和不确定性使其短期功率的预测工作十分困难,而神经网络模型依靠其强大的自学习能力在风电功率预测领域有着广泛的应用。但神经网络预测精度受初始权重影响较大,且易出现过拟合的问题。为此构建一种基于改进鲸鱼算... 由于风力发电的随机性和不确定性使其短期功率的预测工作十分困难,而神经网络模型依靠其强大的自学习能力在风电功率预测领域有着广泛的应用。但神经网络预测精度受初始权重影响较大,且易出现过拟合的问题。为此构建一种基于改进鲸鱼算法和模拟退火组合优化的Elman神经网络短期风电功率预测模型,模型首先利用改进鲸鱼算法结合模拟退火策略获得高质量神经网络初始权值,接着引入正则化损失函数防止其过拟合,最后以西班牙瓦伦西亚某风电场陆上短期风电功率为研究对象,将该算法与BP、LSTM、Elman、WOA-Elman、IWOA-Elman 5种神经网络算法进行算法性能测试对比,结果表明IWOA-SA-Elman神经网络模型预测误差最小,验证了该算法的合理性和有效性。 展开更多
关键词 风电 ELMAN神经网络 预测 模拟退火 鲸鱼优化算法
下载PDF
AR-MED共振特征增强的风电齿轮箱故障诊断
4
作者 孙抗 史晓玉 +1 位作者 赵来军 杨明 《组合机床与自动化加工技术》 北大核心 2024年第8期163-167,174,共6页
针对风电齿轮箱故障时脉冲成分往往淹没在其他频率分量中,早期故障特征难以有效提取的问题,提出一种自回归最小熵解卷积(AR-MED)共振特征增强的风电齿轮箱故障诊断方法,并结合一维卷积神经网络(1DCNN),实现齿轮箱高精度故障诊断。首先,... 针对风电齿轮箱故障时脉冲成分往往淹没在其他频率分量中,早期故障特征难以有效提取的问题,提出一种自回归最小熵解卷积(AR-MED)共振特征增强的风电齿轮箱故障诊断方法,并结合一维卷积神经网络(1DCNN),实现齿轮箱高精度故障诊断。首先,使用共振稀疏分解算法(RSSD)将振动信号分解成含有噪声和谐波成分的高共振分量和含有故障冲击成分的低共振分量;其次,对低共振分量使用自回归最小熵解卷积运算,增强低共振分量中微弱的周期性冲击成分;最后,构建自回归最小熵解卷积共振特征增强的1DCNN模型,将分解得到的谐波分量和周期性冲击分量进行特征融合以及有针对的训练和分类。实验结果表明,与现有故障诊断模型相比,所提方法在提取风电齿轮箱的故障特征信息以及提高故障诊断精度方面具有有效性和优越性。 展开更多
关键词 共振稀疏分解 自回归最小熵解卷积 特征增强 一维卷积神经网络 风电齿轮箱
下载PDF
风电和光伏发电功率联合预测与预调度框架 被引量:1
5
作者 叶林 裴铭 +3 位作者 李卓 宋旭日 罗雅迪 汤涌 《高电压技术》 EI CAS CSCD 北大核心 2024年第9期3823-3836,共14页
随着多区域互联电力系统的发展,风电、光伏等新能源发电大规模并网,风电-光伏功率的联合预测和协调调度是必然趋势和迫切需求。为此,从风电-光伏发电的时空相关性分析出发,对风电-光伏功率时空耦合、风电光伏联合预测建模、风电光伏联... 随着多区域互联电力系统的发展,风电、光伏等新能源发电大规模并网,风电-光伏功率的联合预测和协调调度是必然趋势和迫切需求。为此,从风电-光伏发电的时空相关性分析出发,对风电-光伏功率时空耦合、风电光伏联合预测建模、风电光伏联合预测模型参数优化、考虑风电-光伏联合预测的电力系统预调度等方面进行了分析讨论。首先,研究揭示风电-光伏功率在时间-空间上的交互影响机理,提出面向多时间尺度的风电-光伏功率时间互补性分析方法,建立风电-光伏发电空间相关性量化模型,构建基于多阶图卷积神经网络风电-光伏发电时空耦合模型;基于此,研究提出了融合异构图神经网络的风电-光伏联合预测方法,建立了风电-光伏联合预测模型参数优化模型,构建了新能源有功功率预测误差矢量评价体系,为风电-光伏联合发电系统的协调调度和控制提供决策支撑;在风电-光伏联合发电预测的基础上,采用风电、光伏发电时间互补、空间互济的思路探讨了风电-光伏联合的电力系统预调度策略和方法,对不同时间尺度风电-光伏的协调调度策略进行了剖析,建立了电网-区域-集群-场站空间递阶的风电-光伏联合发电系统分层调度框架。最后,展望了未来风电-光伏联合预测与预调度方面应研究的方向。 展开更多
关键词 风电-光伏联合预测 时空相关性 异构图神经网络 风电-光伏协调调度 电力系统预调度
下载PDF
基于CBAM-LSTM的风电集群功率短期预测方法 被引量:1
6
作者 张哲 王勃 《东北电力大学学报》 2024年第1期1-8,共8页
风电功率的精准预测对我国实现“碳达峰”、“碳中和”的目标具有重要意义。传统的风电功率预测方法往往忽视了时间序列数据中的长期依赖关系和空间相关性,导致预测结果不准确。为了解决这个问题,文中提出了了卷积块注意力机制(Convolut... 风电功率的精准预测对我国实现“碳达峰”、“碳中和”的目标具有重要意义。传统的风电功率预测方法往往忽视了时间序列数据中的长期依赖关系和空间相关性,导致预测结果不准确。为了解决这个问题,文中提出了了卷积块注意力机制(Convolutional Block Attention Module, CBAM)和长短时记忆网络(Long Short-Term Memory, LSTM)相结合的模型。首先,使用CBAM对风电功率时间序列数据特征和数值天气预报中蕴含的空间特性进行提取,该模块能够自适应地学习时间和空间上的重要特征;然后,将提取的特征输入到LSTM层结构中进行功率预测。为了验证所提方法的有效性,使用中国吉林省某风电场的数据集进行验证,实验结果表明,与其他功率预测方法相比,文中所提方法平均绝对误差(Mean Absolute Error, MAE)平均降低2.67%;决定系数(R-Square, R2)平均提高23%;均方根误差(Root Mean Square Error, RMSE)平均降低2.69%。 展开更多
关键词 风电功率 卷积块注意力机制 长短时记忆神经网络 短期风电集群功率预测
下载PDF
基于DCGCN模型的海上风电场超短期功率预测
7
作者 黄玲玲 石孝华 +2 位作者 符杨 刘阳 应飞祥 《电力系统自动化》 EI CSCD 北大核心 2024年第15期64-72,共9页
图卷积网络(GCN)具有很强的数据关联挖掘能力,近年来在风电功率预测领域获得了广泛关注。然而,传统的基于GCN模型的超短期风电功率预测难以同时处理影响风电功率的两大核心因素(风速与机组状态信息)的双模态问题,基于此,提出了一种基于... 图卷积网络(GCN)具有很强的数据关联挖掘能力,近年来在风电功率预测领域获得了广泛关注。然而,传统的基于GCN模型的超短期风电功率预测难以同时处理影响风电功率的两大核心因素(风速与机组状态信息)的双模态问题,基于此,提出了一种基于双通道图卷积网络(DCGCN)的海上风电场超短期功率预测模型。首先,建立以理论功率曲线为基准的机组状态指标模型,定量表征机组状态变化对其发电能力的影响;其次,构建海上风电场图拓扑,建立基于风速和状态邻接矩阵的风电场各机组捕获的风速与机组状态信息的关联关系模型;最后,建立基于DCGCN的风电场超短期功率预测方法。算例结果表明,所提模型有助于提高风电场功率预测模型的训练效率和预测精度。 展开更多
关键词 超短期功率预测 图卷积网络 海上风电场 功率曲线 双通道神经网络
下载PDF
基于改进BNN-LSTM的风电功率概率预测
8
作者 李昱 《微型电脑应用》 2024年第3期206-209,共4页
针对确定性的风电功率预测难以提供预测结果的波动区间和支撑风险决策的问题,以贝叶斯网络为基础,通过将先验分布置于LSTM网络层权重参数之上,构建了贝叶斯LSTM神经网络(BNN-LSTM)。以时间卷积神经网络(TCNN)处理风电功率预测的历史时... 针对确定性的风电功率预测难以提供预测结果的波动区间和支撑风险决策的问题,以贝叶斯网络为基础,通过将先验分布置于LSTM网络层权重参数之上,构建了贝叶斯LSTM神经网络(BNN-LSTM)。以时间卷积神经网络(TCNN)处理风电功率预测的历史时序数据,提取时序数据的关联特征。使用互信息熵方法分析了风电功率的气象数据集,剔除关联性小的变量,对气象数据集进行降维处理。并采用嵌入(embedding)结构学习风电功率时间分类特征。随后将TCNN处理后的时序数据、降维后的气象数据以及时间分类特征数据一起送入BNN-LSTM预测模型,通过在某风电数据集不同算法的概率预测指标pinball损失和Winkler评分的对比验证,可知,本文所提方法能从可对风电功率波动做出较为准确的响应,预测效果更好。 展开更多
关键词 贝叶斯神经网络 BNN-LSTM 时间卷积神经网络 风电功率 互信息熵 概率预测
下载PDF
NWP辅助复合神经网络预测误差修正的风储系统日前上报策略
9
作者 李翠萍 张冰 +3 位作者 李军徽 朱辉 朱星旭 何俐 《太阳能学报》 EI CAS CSCD 北大核心 2024年第10期86-96,共11页
新能源电站出力存在强波动性导致巨额偏差考核支出,因此基于数值天气预报(NWP)和复合深度学习算法,提出一种计及误差预测修正的风储系统日前上报策略。首先通过改进的组合数据预处理算法对数据进行清洗以降低后续预测难度,建立基于分段... 新能源电站出力存在强波动性导致巨额偏差考核支出,因此基于数值天气预报(NWP)和复合深度学习算法,提出一种计及误差预测修正的风储系统日前上报策略。首先通过改进的组合数据预处理算法对数据进行清洗以降低后续预测难度,建立基于分段式收敛粒子群算法(PCPSO)参数寻优的长短期记忆网络(LSTM)对分量分别进行预测,重构预测结果获取原预测曲线。其次考虑预测误差及NWP信息导入多输入反向传播神经网络(MIBP)获取误差预测曲线,使用非参数核密度函数修订该预测误差曲线后,以储能跟踪误差最小和储能全局调控能力最高为目的模拟储能运行获取最佳储能动作曲线,且叠加原预测曲线和最佳储能动作曲线获取最终日前上报曲线。最后通过仿真分析验证了上报策略的正确性与可行性。 展开更多
关键词 风电 深度神经网络 粒子群优化 储能 日前上报策略 预测误差特征 NWP信息
下载PDF
基于CNN–LSTM的风电场发电功率迁移预测方法 被引量:3
10
作者 唐清苇 向月 +3 位作者 代佳琨 李子豪 孙炜 刘俊勇 《工程科学与技术》 EI CAS CSCD 北大核心 2024年第2期91-99,共9页
随着能源消耗的持续增长和全球气候问题的日趋严峻,以风能为代表的清洁能源装机容量正在稳步提升。为更好地消纳风电,需要准确的风电场发电功率预测为配套设施建设和未来规划制定提供有效依据。针对在缺少风电历史运行数据时预测精度较... 随着能源消耗的持续增长和全球气候问题的日趋严峻,以风能为代表的清洁能源装机容量正在稳步提升。为更好地消纳风电,需要准确的风电场发电功率预测为配套设施建设和未来规划制定提供有效依据。针对在缺少风电历史运行数据时预测精度较低的问题,提出一种基于卷积神经网络–长短期记忆神经网络(CNN–LSTM)的规划阶段风电场发电功率预测模型。首先,基于参考电站历史数据提取风速–风电功率实测数据点,采用3次样条插值进行风电功率曲线建模。然后,采用K–means聚类算法,根据风速–风电功率的特性关系划分参考风电场的区域类别。综合考虑风电功率与多维气象因素的特征关系和功率的时序特性,构建CNN–LSTM预测模型,提出基于功率曲线的预测结果修正方法。最后,基于某地风电场实际数据进行算例分析,并与使用标准功率曲线和未进行修正时的预测结果进行对比分析。结果表明:基于风速–风电功率特性的风电场聚类可以实现参考风电场的优化识别;所提模型预测结果优于传统标准功率曲线预测方法,基于功率曲线的修正方法进一步提升了预测效果。基于深度学习算法的规划阶段风电场发电功率迁移预测模型综合考虑了风力发电特性和多维环境因素,其有效性得到了验证,可以为提高规划阶段风电场发电功率的预测精度提供新思路。 展开更多
关键词 风电预测 长短期记忆神经网络 卷积神经网络 功率曲线 风电场规划
下载PDF
基于GRU-XGBoost的短期风电功率预测研究 被引量:1
11
作者 耿运涛 《船电技术》 2024年第7期32-35,共4页
本文利用自适应噪声的完备经验模态分解(CEEMDAN)对风电原始序列信号进行处理后,采用GRU-XGBoost模型对非线性、非平稳的功率序列进行建模和预测,以提升模型的预测能力和泛化性。首先,通过CEEMDAN将风电功率原始序列分解为不同时间尺度... 本文利用自适应噪声的完备经验模态分解(CEEMDAN)对风电原始序列信号进行处理后,采用GRU-XGBoost模型对非线性、非平稳的功率序列进行建模和预测,以提升模型的预测能力和泛化性。首先,通过CEEMDAN将风电功率原始序列分解为不同时间尺度的分量,然后将分解后的信号输入GRU神经网络生成预测信号,最后通过XGBoost进行校正。通过与多种预测模型进行比较,证明了该模型在预测精度方面的卓越表现。 展开更多
关键词 自适应噪声 风电功率 建模和预测 GRU神经网络
下载PDF
基于低风速功率修正和损失函数改进的超短期风电功率预测
12
作者 臧海祥 赵勇凯 +3 位作者 张越 程礼临 卫志农 秦雪妮 《电力系统自动化》 EI CSCD 北大核心 2024年第7期248-257,共10页
风电功率具有较强的波动性和随机性。为进一步提升风电功率的预测精度,提出一种基于低风速功率修正和损失函数改进的超短期风电功率预测模型。该模型采用卷积神经网络、自注意力机制和双向门控循环单元捕获风电功率序列的长期时序依赖... 风电功率具有较强的波动性和随机性。为进一步提升风电功率的预测精度,提出一种基于低风速功率修正和损失函数改进的超短期风电功率预测模型。该模型采用卷积神经网络、自注意力机制和双向门控循环单元捕获风电功率序列的长期时序依赖关系。为了解决低风速下待风状态神经网络难以精确拟合的问题,模型通过预测风速并结合当前时段的风电功率对低风速段的预测功率进行修正。针对参数训练的稳定性问题,模型通过改进预测策略和共享权重,引入一种多元非线性的损失函数来提取序列间的关联性。结果表明,所提模型在多项误差指标中均优于对比模型,能够有效提升超短期风电功率的预测效果。 展开更多
关键词 超短期风电功率预测 功率修正 损失函数改进 神经网络模型
下载PDF
引入注意力机制的LSTM-FCN海上风电功率预测 被引量:2
13
作者 张昊立 张菁 +2 位作者 倪建辉 陈龙 高典 《太阳能学报》 EI CAS CSCD 北大核心 2024年第6期444-450,共7页
提出一种注意力机制与LSTM-FCN网络结合的海上风电预测模型,在数据中引入风切变物理量来更准确地预测海上风电发电功率。选用公共数据集网站Zenodo内某海上风电场数据中2组风力机数据进行分析和预测验证。对数据集进行标准化预处理后,用... 提出一种注意力机制与LSTM-FCN网络结合的海上风电预测模型,在数据中引入风切变物理量来更准确地预测海上风电发电功率。选用公共数据集网站Zenodo内某海上风电场数据中2组风力机数据进行分析和预测验证。对数据集进行标准化预处理后,用AMLSTM-FCN网络和CNN网络、LSTM网络、LSTM-FCN网络进行对比实验,其中AMLSTM-FCN网络在2份风力机数据预测中,RMSE、MAPE、MAE分别为:5号风力机:6.9434、14.01%、48.6636,6号风力机:2.6933、7.12%、17.2536,在相同时段上采用去除风切变的数据训练网络,得到的预测结果从4个指标中看出预测准确度下降。实验表明AMLSTM-FCN网络在海上风电功率预测中有更高的预测精度,以及风切变也对海上风电功率有显著影响。 展开更多
关键词 海上风电 功率预测 注意力机制 人工神经网络 风切变
下载PDF
基于KCR-Informer的长期风电功率预测研究
14
作者 李国栋 徐明扬 《电力信息与通信技术》 2024年第4期55-62,共8页
准确的长期风电功率预测对电网系统稳定运行至关重要,传统预测方法在处理长序列预测时效果并不理想,近期研究表明Informer模型在长序列预测领域取得良好效果。然而,该模型在捕捉数据的局部特征以及处理网络层数堆叠问题上还有待改进。... 准确的长期风电功率预测对电网系统稳定运行至关重要,传统预测方法在处理长序列预测时效果并不理想,近期研究表明Informer模型在长序列预测领域取得良好效果。然而,该模型在捕捉数据的局部特征以及处理网络层数堆叠问题上还有待改进。文章提出一种基于卡尔曼滤波器-卷积神经网络-残差网络-Informer(Kalman filter-convolutional neural network-residual network-informer,KCR-Informer)模型的长期风电功率预测方法,首先分析气象数据对风电功率的影响,使用卡尔曼滤波器对风电气象数据进行数据平滑处理,以减轻噪声对数据的影响,然后基于Informer模型建立风电功率预测模型,根据气象数据以及历史功率数据进行长期功率预测;在此基础上,引入卷积神经网络和残差连接模块,使模型能够更好的捕捉到局部特征,同时加快模型收敛,解决模型网络退化问题。算例的结果表明,与长短期记忆网络(long short-term memory,LSTM)算法、Transformer算法、Informer算法相比,文章方法在不同预测步长下的平均绝对误差(mean absolute error,MAE)降低5.7%~30%,均方误差(mean square error,MSE)降低8.3%~35%,长期风功率预测的精度得到提升,验证了模型的有效性。 展开更多
关键词 长期风电功率预测 卡尔曼滤波器 Informer模型 卷积神经网络 残差连接
下载PDF
基于CEEMDAN-AsyHyperBand-MultiTCN的短期风电功率预测 被引量:1
15
作者 刘凡 李捍东 覃涛 《太阳能学报》 EI CAS CSCD 北大核心 2024年第1期151-158,共8页
为减少风电功率短期预测误差,提高风电利用效率,提出一种基于经验模态分解和异步超参数优化的多层时间卷积网络(CEEMDAN-AsyHyperBand-MultiTCN)的短期风电功率预测方法。首先,确定序列分量的数量,并使用自适应噪声完备集合经验模态分解... 为减少风电功率短期预测误差,提高风电利用效率,提出一种基于经验模态分解和异步超参数优化的多层时间卷积网络(CEEMDAN-AsyHyperBand-MultiTCN)的短期风电功率预测方法。首先,确定序列分量的数量,并使用自适应噪声完备集合经验模态分解(CEEMDAN)对原始风电功率进行分解,构成训练数据集。其次,使用深度残差级联(DRnet)构建多层的时间卷积网络(TCN),并使用AsyHyperband算法对序列分量模型进行超参数寻优。最后,对序列分量分别进行预测,重构预测结果得到预测值。实验表明,该文提出的方法相比于其他方法能有效降低风电功率预测误差。 展开更多
关键词 风电功率 预测 神经网络 多层 集成经验模态分解 超参数搜索
下载PDF
基于动态图注意力的风电场组合预测模型
16
作者 廖雪超 程轶群 《软件导刊》 2024年第2期9-16,共8页
为了实现风电场用能管理的高效调度,充分提取多站点间时空特征的潜在联系,提出一种基于动态图卷积和图注意力的多站点短期风电功率时空组合预测模型。使用图卷积实现多站点间时序特征的邻居聚合,并使用图注意力机制加强其对空间特征的... 为了实现风电场用能管理的高效调度,充分提取多站点间时空特征的潜在联系,提出一种基于动态图卷积和图注意力的多站点短期风电功率时空组合预测模型。使用图卷积实现多站点间时序特征的邻居聚合,并使用图注意力机制加强其对空间特征的提取能力。同时,针对传统模型无法处理图节点关联性实时变化的问题,先在图卷积过程中依据站点间的相关系数和距离动态构建邻接矩阵,再使用门控循环单元处理动态图卷积输出的上下文信息,最后完成风电功率预测。实验结果表明,所提出的组合模型在预测精度、稳定性和多步预测性能方面均最优。 展开更多
关键词 短期风电预测 动态相关性 图卷积神经网络 注意力机制 门控循环单元
下载PDF
基于双重注意力机制CNN-BiLSTM与LightGBM误差修正的超短期风电功率预测 被引量:3
17
作者 龙铖 余成波 +3 位作者 何铖 朱春霖 张未 陈佳 《电气工程学报》 CSCD 北大核心 2024年第2期138-145,共8页
为了响应国家“双碳”目标,针对风电功率预测误差影响电网安全稳定运行的问题,提出一种基于双重注意力机制改进的CNN-BiLSTM初步预测和LightGBM误差修正的组合预测模型。该模型首先利用卷积神经网络(Convolutional neural network,CNN)... 为了响应国家“双碳”目标,针对风电功率预测误差影响电网安全稳定运行的问题,提出一种基于双重注意力机制改进的CNN-BiLSTM初步预测和LightGBM误差修正的组合预测模型。该模型首先利用卷积神经网络(Convolutional neural network,CNN)与注意力机制结合构成特征注意力模块自适应提取风电功率重要特征,然后利用双向长短期记忆网络(Bi-directional long short-term memory,BiLSTM)与注意力机制结合构成时间注意力模块对风电功率进行初步预测,最后利用LightGBM构造误差修正模型,对初步预测结果进行修正。使用平均绝对误差(Mean absolute error,MAE)、均方根误差(Root mean square error,RMSE)和确定系数(R^(2))作为试验评价指标,结果表明,该组合模型预测效果明显优于BiLSTM、CNN-BiLSTM等模型。 展开更多
关键词 风电功率预测 注意力机制 卷积神经网络 长短期记忆网络 误差修正 LightGBM
下载PDF
人工智能在风力发电领域的专利分析
18
作者 刘洁 《信息通信技术与政策》 2024年第10期8-14,共7页
风力发电属于一项重要的清洁能源,将人工智能与风力发电深度融合,提升能源调度和利用的智能化符合当前能源数字化转型的发展趋势。通过对人工智能在风力发电领域的专利申请进行检索分析,梳理了该领域的主要申请趋势和热点。同时,从专利... 风力发电属于一项重要的清洁能源,将人工智能与风力发电深度融合,提升能源调度和利用的智能化符合当前能源数字化转型的发展趋势。通过对人工智能在风力发电领域的专利申请进行检索分析,梳理了该领域的主要申请趋势和热点。同时,从专利视角分析能源数字化转型的发展现状和趋势,为优化专利布局提供相关信息。 展开更多
关键词 风力发电 人工智能 神经网络 专利
下载PDF
基于广义回归神经网络的风力发电场设备温度自适应预测方法
19
作者 张二辉 徐兴朝 +1 位作者 郑卫剑 贾政 《自动化与仪表》 2024年第10期72-75,共4页
传统预测方法很难有效处理风力发电场设备温度各种影响因素之间的非线性关系,从而导致预测结果的不准确。针对上述问题,研究一种基于广义回归神经网络的风力发电场设备温度自适应预测方法。分析风力发电场设备温度影响因素并收集这些因... 传统预测方法很难有效处理风力发电场设备温度各种影响因素之间的非线性关系,从而导致预测结果的不准确。针对上述问题,研究一种基于广义回归神经网络的风力发电场设备温度自适应预测方法。分析风力发电场设备温度影响因素并收集这些因素对应的数据,组成样本,对样本实施离群值处理和归一化处理。利用广义回归神经网络自适应预测设备温度并利用鸽群优化算法(PIO算法)自适应调整广义回归神经网络预测模型参数——平滑因子σ,提高其自适应能力。结果表明,所研究方法的预测偏度最高误差仅为0.3℃,说明该方法在预测温度时具有良好的准确性,预测值接近实际值。 展开更多
关键词 广义回归神经网络 风力发电场 设备温度 PIO算法 自适应预测方法
下载PDF
基于AVMD-CNN-GRU-Attention的超短期风功率预测研究
20
作者 任东方 马家庆 +1 位作者 何志琴 吴钦木 《太阳能学报》 EI CAS CSCD 北大核心 2024年第6期436-443,共8页
为提高超短期风功率的预测精度,提出一种改进的基于变分模态分解的卷积神经网络(AVMD-CNN)、门控循环单元(GRU)和注意力机制(Attention)的超短期风功率预测模型。首先利用改进的VMD将风功率序列分解为K个子模态;然后将各子模态利用样本... 为提高超短期风功率的预测精度,提出一种改进的基于变分模态分解的卷积神经网络(AVMD-CNN)、门控循环单元(GRU)和注意力机制(Attention)的超短期风功率预测模型。首先利用改进的VMD将风功率序列分解为K个子模态;然后将各子模态利用样本熵(SE)和中心频率进行分类,根据分类结果对各子模态分别给定归一化方式,并按SE值分别输入到GRU-Attention和CNN-GRU-Attention模型中进行训练和预测;最后将各子模态预测结果叠加得到最终结果,从而完成超短期风功率预测。以决定系数(R^(2))、平均绝对误差(MAE)、均方根误差(RMSE)以及平均绝对百分比误差(MAPE)为精度评估指标,实际算例表明,所提出模型的R^(2)较文中其他方法平均提高12.06%,MAE、RMSE以及MAPE分别平均降低59.36%、62.49%和48.34%,具有较高的预测精度。 展开更多
关键词 风功率 预测 变分模态分解 卷积神经网络 注意力机制 样本熵
下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部