期刊文献+
共找到6,815篇文章
< 1 2 250 >
每页显示 20 50 100
Fault Detection and Diagnosis of a Gearbox in Marine Propulsion Systems Using Bispectrum Analysis and Artificial Neural Networks 被引量:3
1
作者 李志雄 严新平 +2 位作者 袁成清 赵江滨 彭中笑 《Journal of Marine Science and Application》 2011年第1期17-24,共8页
A marine propulsion system is a very complicated system composed of many mechanical components.As a result,the vibration signal of a gearbox in the system is strongly coupled with the vibration signatures of other com... A marine propulsion system is a very complicated system composed of many mechanical components.As a result,the vibration signal of a gearbox in the system is strongly coupled with the vibration signatures of other components including a diesel engine and main shaft.It is therefore imperative to assess the coupling effect on diagnostic reliability in the process of gear fault diagnosis.For this reason,a fault detection and diagnosis method based on bispectrum analysis and artificial neural networks (ANNs) was proposed for the gearbox with consideration given to the impact of the other components in marine propulsion systems.To monitor the gear conditions,the bispectrum analysis was first employed to detect gear faults.The amplitude-frequency plots containing gear characteristic signals were then attained based on the bispectrum technique,which could be regarded as an index actualizing forepart gear faults diagnosis.Both the back propagation neural network (BPNN) and the radial-basis function neural network (RBFNN) were applied to identify the states of the gearbox.The numeric and experimental test results show the bispectral patterns of varying gear fault severities are different so that distinct fault features of the vibrant signal of a marine gearbox can be extracted effectively using the bispectrum,and the ANN classification method has achieved high detection accuracy.Hence,the proposed diagnostic techniques have the capability of diagnosing marine gear faults in the earlier phases,and thus have application importance. 展开更多
关键词 marine propulsion system fault diagnosis vibration analysis BISPECTRUM artificial neural networks Article
下载PDF
SIMULATION INVESTIGATION OF AEROENGINE FAULT DIAGNOSIS USING NEURAL NETWORKS 被引量:3
2
作者 叶志锋 孙健国 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2001年第2期157-163,共7页
Traditional scheduled maintenance systems are costly, labor intensive, and typically provide noncomprehensive detection and diagnosis of engine faults. The engine monitoring system (EMS) on modern aircrafts has the p... Traditional scheduled maintenance systems are costly, labor intensive, and typically provide noncomprehensive detection and diagnosis of engine faults. The engine monitoring system (EMS) on modern aircrafts has the potential to provide maintenance personnel with valuable information for detecting and diagnosing engine faults. In this paper, an RBF neural network approach is applied to aeroengine gas path fault diagnosis. It can detect multiple faults and quantify the amount of deterioration of the various engine components as a function of measured parameters. The results obtained demonstrate that the accuracy of diagnosis is consistent with practical requirements. The approach takes advantage of the nonlinear mapping feature of neural networks to capture the appropriate characteristics of an aeroengine. The methodology is generic and applicable to other similar plants having high complexity. 展开更多
关键词 neural network fault diagnosis AEROENGINE
下载PDF
Reconstruction based approach to sensor fault diagnosis using auto-associative neural networks 被引量:4
3
作者 Mousavi Hamidreza Shahbazian Mehdi +1 位作者 Jazayeri-Rad Hooshang Nekounam Aliakbar 《Journal of Central South University》 SCIE EI CAS 2014年第6期2273-2281,共9页
Fault diagnostics is an important research area including different techniques.Principal component analysis(PCA)is a linear technique which has been widely used.For nonlinear processes,however,the nonlinear principal ... Fault diagnostics is an important research area including different techniques.Principal component analysis(PCA)is a linear technique which has been widely used.For nonlinear processes,however,the nonlinear principal component analysis(NLPCA)should be applied.In this work,NLPCA based on auto-associative neural network(AANN)was applied to model a chemical process using historical data.First,the residuals generated by the AANN were used for fault detection and then a reconstruction based approach called enhanced AANN(E-AANN)was presented to isolate and reconstruct the faulty sensor simultaneously.The proposed method was implemented on a continuous stirred tank heater(CSTH)and used to detect and isolate two types of faults(drift and offset)for a sensor.The results show that the proposed method can detect,isolate and reconstruct the occurred fault properly. 展开更多
关键词 fault diagnosis nonlinear principal component analysis auto-associative neural networks
下载PDF
Connected Components-based Colour Image Representations of Vibrations for a Two-stage Fault Diagnosis of Roller Bearings Using Convolutional Neural Networks 被引量:3
4
作者 Hosameldin O.A.Ahmed Asoke K Nandi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第3期73-93,共21页
Roller bearing failure is one of the most common faults in rotating machines.Various techniques for bearing fault diagnosis based on faults feature extraction have been proposed.But feature extraction from fault signa... Roller bearing failure is one of the most common faults in rotating machines.Various techniques for bearing fault diagnosis based on faults feature extraction have been proposed.But feature extraction from fault signals requires expert prior information and human labour.Recently,deep learning algorithms have been applied extensively in the condition monitoring of rotating machines to learn features automatically from the input data.Given its robust performance in image recognition,the convolutional neural network(CNN)architecture has been widely used to learn automatically discriminative features from vibration images and classify health conditions.This paper proposes and evaluates a two-stage method RGBVI-CNN for roller bearings fault diagnosis.The first stage in the proposed method is to generate the RGB vibration images(RGBVIs)from the input vibration signals.To begin this process,first,the 1-D vibration signals were converted to 2-D grayscale vibration Images.Once the conversion was completed,the regions of interest(ROI)were found in the converted 2-D grayscale vibration images.Finally,to produce vibration images with more discriminative characteristics,an algorithm was applied to the 2-D grayscale vibration images to produce connected components-based RGB vibration images(RGBVIs)with sets of colours and texture features.In the second stage,with these RGBVIs a CNN-based architecture was employed to learn automatically features from the RGBVIs and to classify bearing health conditions.Two cases of fault classification of rolling element bearings are used to validate the proposed method.Experimental results of this investigation demonstrate that RGBVI-CNN can generate advantageous health condition features from bearing vibration signals and classify the health conditions under different working loads with high accuracy.Moreover,several classification models trained using RGBVI-CNN offered high performance in the testing results of the overall classification accuracy,precision,recall,and F-score. 展开更多
关键词 Bearing fault diagnosis Image representation of vibrations Deep learning Convolutional neural networks
下载PDF
Optical diagnosis of colorectal polyps using convolutional neural networks 被引量:2
5
作者 Rawen Kader Andreas V Hadjinicolaou +2 位作者 Fanourios Georgiades Danail Stoyanov Laurence B Lovat 《World Journal of Gastroenterology》 SCIE CAS 2021年第35期5908-5918,共11页
Colonoscopy remains the gold standard investigation for colorectal cancer screening as it offers the opportunity to both detect and resect pre-malignant and neoplastic polyps.Although technologies for image-enhanced e... Colonoscopy remains the gold standard investigation for colorectal cancer screening as it offers the opportunity to both detect and resect pre-malignant and neoplastic polyps.Although technologies for image-enhanced endoscopy are widely available,optical diagnosis has not been incorporated into routine clinical practice,mainly due to significant inter-operator variability.In recent years,there has been a growing number of studies demonstrating the potential of convolutional neural networks(CNN)to enhance optical diagnosis of polyps.Data suggest that the use of CNNs might mitigate the inter-operator variability amongst endoscopists,potentially enabling a“resect and discard”or“leave in”strategy to be adopted in real-time.This would have significant financial benefits for healthcare systems,avoid unnecessary polypectomies of non-neoplastic polyps and improve the efficiency of colonoscopy.Here,we review advances in CNN for the optical diagnosis of colorectal polyps,current limitations and future directions. 展开更多
关键词 Artificial intelligence Deep learning Convolutional neural networks Computer aided diagnosis Optical diagnosis Colorectal polyps
下载PDF
Fault detection and diagnosis of permanent-magnetic DC motors based on current analysis and BP neural networks 被引量:1
6
作者 刘曼兰 朱春波 王铁成 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2005年第3期266-270,共5页
In order to guarantee quality during mass serial production of motors, a convenient approach on how to detect and diagnose the faults of a permanent-magnetic DC motor based on armature current analysis and BP neural n... In order to guarantee quality during mass serial production of motors, a convenient approach on how to detect and diagnose the faults of a permanent-magnetic DC motor based on armature current analysis and BP neural networks was presented in this paper. The fault feature vector was directly established by analyzing the armature current. Fault features were extracted from the current using various signal processing methods including Fourier analysis, wavelet analysis and statistical methods. Then an advanced BP neural network was used to finish decision-making and separate fault patterns. Finally, the accuracy of the method in this paper was verified by analyzing the mechanism of faults theoretically. The consistency between the experimental results and the theoretical analysis shows that four kinds of representative faults of low power permanent-magnetic DC motors can be diagnosed conveniently by this method. These four faults are brush fray, open circuit of components, open weld of components and short circuit between armature coils. This method needs fewer hardware instruments than the conventional method and whole procedures can be accomplished by several software packages developed in this paper. 展开更多
关键词 DC motor current analysis BP neural networks fault detection fault diagnosis
下载PDF
Wavelet Transform and Neural Networks in Fault Diagnosis of a Motor Rotor 被引量:2
7
作者 RONG Ming-xing 《International Journal of Plant Engineering and Management》 2012年第2期104-111,共8页
In the motor fault diagnosis technique, vibration and stator current frequency components of detection are two main means. This article will discuss the signal detection method based on vibration fault. Because the mo... In the motor fault diagnosis technique, vibration and stator current frequency components of detection are two main means. This article will discuss the signal detection method based on vibration fault. Because the motor vibration signal is a non-stationary random signal, fault signals often contain a lot of time-varying, burst proper- ties of ingredients. The traditional Fourier signal analysis can not effectively extract the motor fault characteristics, but are also likely to be rich in failure information but a weak signal as noise. Therefore, we introduce wavelet packet transforms to extract the fault characteristics of the signal information. Obtained was the result as the neural network input signal, using the L-M neural network optimization method for training, and then used the BP net- work for fault recognition. This paper uses Matlab software to simulate and confirmed the method of motor fault di- agnosis validity and accuracy 展开更多
关键词 fault diagnosis wavelet transform neural networks MOTOR vibration signal
下载PDF
Deep learning with convolutional neural networks for identification of liver masses and hepatocellular carcinoma: A systematic review 被引量:11
8
作者 Samy A Azer 《World Journal of Gastrointestinal Oncology》 SCIE CAS 2019年第12期1218-1230,共13页
BACKGROUND Artificial intelligence,such as convolutional neural networks(CNNs),has been used in the interpretation of images and the diagnosis of hepatocellular cancer(HCC)and liver masses.CNN,a machine-learning algor... BACKGROUND Artificial intelligence,such as convolutional neural networks(CNNs),has been used in the interpretation of images and the diagnosis of hepatocellular cancer(HCC)and liver masses.CNN,a machine-learning algorithm similar to deep learning,has demonstrated its capability to recognise specific features that can detect pathological lesions.AIM To assess the use of CNNs in examining HCC and liver masses images in the diagnosis of cancer and evaluating the accuracy level of CNNs and their performance.METHODS The databases PubMed,EMBASE,and the Web of Science and research books were systematically searched using related keywords.Studies analysing pathological anatomy,cellular,and radiological images on HCC or liver masses using CNNs were identified according to the study protocol to detect cancer,differentiating cancer from other lesions,or staging the lesion.The data were extracted as per a predefined extraction.The accuracy level and performance of the CNNs in detecting cancer or early stages of cancer were analysed.The primary outcomes of the study were analysing the type of cancer or liver mass and identifying the type of images that showed optimum accuracy in cancer detection.RESULTS A total of 11 studies that met the selection criteria and were consistent with the aims of the study were identified.The studies demonstrated the ability to differentiate liver masses or differentiate HCC from other lesions(n=6),HCC from cirrhosis or development of new tumours(n=3),and HCC nuclei grading or segmentation(n=2).The CNNs showed satisfactory levels of accuracy.The studies aimed at detecting lesions(n=4),classification(n=5),and segmentation(n=2).Several methods were used to assess the accuracy of CNN models used.CONCLUSION The role of CNNs in analysing images and as tools in early detection of HCC or liver masses has been demonstrated in these studies.While a few limitations have been identified in these studies,overall there was an optimal level of accuracy of the CNNs used in segmentation and classification of liver cancers images. 展开更多
关键词 Deep learning Convolutional neural network HEPATOCELLULAR CARCINOMA LIVER MASSES LIVER cancer Medical imaging Classification Segmentation Artificial INTELLIGENCE COMPUTER-AIDED diagnosis
下载PDF
An Interpretable Denoising Layer for Neural Networks Based on Reproducing Kernel Hilbert Space and its Application in Machine Fault Diagnosis 被引量:4
9
作者 Baoxuan Zhao Changming Cheng +3 位作者 Guowei Tu Zhike Peng Qingbo He Guang Meng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第3期104-114,共11页
Deep learning algorithms based on neural networks make remarkable achievements in machine fault diagnosis,while the noise mixed in measured signals harms the prediction accuracy of networks.Existing denoising methods ... Deep learning algorithms based on neural networks make remarkable achievements in machine fault diagnosis,while the noise mixed in measured signals harms the prediction accuracy of networks.Existing denoising methods in neural networks,such as using complex network architectures and introducing sparse techniques,always suffer from the difficulty of estimating hyperparameters and the lack of physical interpretability.To address this issue,this paper proposes a novel interpretable denoising layer based on reproducing kernel Hilbert space(RKHS)as the first layer for standard neural networks,with the aim to combine the advantages of both traditional signal processing technology with physical interpretation and network modeling strategy with parameter adaption.By investigating the influencing mechanism of parameters on the regularization procedure in RKHS,the key parameter that dynamically controls the signal smoothness with low computational cost is selected as the only trainable parameter of the proposed layer.Besides,the forward and backward propagation algorithms of the designed layer are formulated to ensure that the selected parameter can be automatically updated together with other parameters in the neural network.Moreover,exponential and piecewise functions are introduced in the weight updating process to keep the trainable weight within a reasonable range and avoid the ill-conditioned problem.Experiment studies verify the effectiveness and compatibility of the proposed layer design method in intelligent fault diagnosis of machinery in noisy environments. 展开更多
关键词 Machine fault diagnosis Reproducing kernel Hilbert space(RKHS) Regularization problem Denoising layer neural network
下载PDF
Fault Diagnosis System for Aquaculture Networking Based on Neural Network
10
作者 Liu Yanzhong Pan Caixia +2 位作者 Chen Yingyi Sun Chuanren Wang Lin 《Animal Husbandry and Feed Science》 CAS 2016年第1期39-43,共5页
In view of existing problems at current aquaculture networking, such as nonlinear characteristic of fault and faults are easily affected by many factors, a fault diagnosis model based on neural network was proposed. I... In view of existing problems at current aquaculture networking, such as nonlinear characteristic of fault and faults are easily affected by many factors, a fault diagnosis model based on neural network was proposed. In the building process of the model, the common fault types in the field of aquaculture networking were first analyzed and the types of fault mode were summarized. Afterwards, the evaluation indices of fault diagnosis were made, and eventually the fault diagnosis system of aquaculture networking was constructed using neural network principle. The fault diagnosis system could not only reduce the communication burden, but also have high diagnostic rate. Thus, it could be well applied in the fault dia^osis system for aquaculture networking. 展开更多
关键词 neural network Aquaculture networking Fault diagnosis
下载PDF
An Intelligent Diagnosis Method of the Working Conditions in Sucker-Rod Pump Wells Based on Convolutional Neural Networks and Transfer Learning
11
作者 Ruichao Zhang Liqiang Wang Dechun Chen 《Energy Engineering》 EI 2021年第4期1069-1082,共14页
In recent years,deep learning models represented by convolutional neural networks have shown incomparable advantages in image recognition and have been widely used in various fields.In the diagnosis of sucker-rod pump... In recent years,deep learning models represented by convolutional neural networks have shown incomparable advantages in image recognition and have been widely used in various fields.In the diagnosis of sucker-rod pump working conditions,due to the lack of a large-scale dynamometer card data set,the advantages of a deep convolutional neural network are not well reflected,and its application is limited.Therefore,this paper proposes an intelligent diagnosis method of the working conditions in sucker-rod pump wells based on transfer learning,which is used to solve the problem of too few samples in a dynamometer card data set.Based on the dynamometer cards measured in oilfields,image classification and preprocessing are conducted,and a dynamometer card data set including 10 typical working conditions is created.On this basis,using a trained deep convolutional neural network learning model,model training and parameter optimization are conducted,and the learned deep dynamometer card features are transferred and applied so as to realize the intelligent diagnosis of dynamometer cards.The experimental results show that transfer learning is feasible,and the performance of the deep convolutional neural network is better than that of the shallow convolutional neural network and general fully connected neural network.The deep convolutional neural network can effectively and accurately diagnose the working conditions of sucker-rod pump wells and provide an effective method to solve the problem of few samples in dynamometer card data sets. 展开更多
关键词 Sucker-rod pump well dynamometer card convolutional neural network transfer learning working condition diagnosis
下载PDF
A Study on Integrated Wavelet Neural Networks in Fault Diagnosis Based on Information Fusion
12
作者 ANG Xue-ye 《International Journal of Plant Engineering and Management》 2007年第1期42-48,共7页
The tight wavelet neural network was constituted by taking the nonlinear Morlet wavelet radices as the excitation function. The idiographic algorithm was presented. It combined the advantages of wavelet analysis and n... The tight wavelet neural network was constituted by taking the nonlinear Morlet wavelet radices as the excitation function. The idiographic algorithm was presented. It combined the advantages of wavelet analysis and neural networks. The integrated wavelet neural network fault diagnosis system was set up based on both the information fusion technology and actual fault diagnosis, which took the sub-wavelet neural network as primary diagnosis from different sides, then came to the conclusions through decision-making fusion. The realizable policy of the diagnosis system and established principle of the sub-wavelet neural networks were given. It can be deduced from the examples that it takes full advantage of diversified characteristic information, and improves the diagnosis rate. 展开更多
关键词 fault diagnosis wavelet analysis integrated neural network information fusion diagnosis rate
下载PDF
An Intelligent Process Fault Diagnosis System based on Andrews Plot and Convolutional Neural Network
13
作者 Shengkai Wang Jie Zhang 《Journal of Dynamics, Monitoring and Diagnostics》 2022年第3期127-138,共12页
This paper proposes an intelligent process fault diagnosis system through integrating the techniques of Andrews plot and convolutional neural network.The proposed fault diagnosis method extracts features from the on-l... This paper proposes an intelligent process fault diagnosis system through integrating the techniques of Andrews plot and convolutional neural network.The proposed fault diagnosis method extracts features from the on-line process measurements using Andrews function.To address the uncertainty of setting the proper dimension of extracted features in Andrews function,a convolutional neural network is used to further extract diagnostic information from the Andrews function outputs.The outputs of the convolutional neural network are then fed to a single hidden layer neural network to obtain the final fault diagnosis result.The proposed fault diagnosis system is compared with a conventional neural network based fault diagnosis system and integrating Andrews function with neural network and manual selection of features in Andrews function outputs.Applications to a simulated CSTR process show that the proposed fault diagnosis system gives much better performance than the conventional neural network based fault diagnosis system and manual selection of features in Andrews function outputs.It reveals that the use of Andrews function and convolutional neural network can improve the diagnosis performance. 展开更多
关键词 Andrews plot convolutional neural network fault diagnosis neural network
下载PDF
Bearings Intelligent Fault Diagnosis by 1-D Adder Neural Networks
14
作者 Jian Tang Chao Wei +3 位作者 Quanchang Li Yinjun Wang Xiaoxi Ding Wenbin Huang 《Journal of Dynamics, Monitoring and Diagnostics》 2022年第3期160-168,共9页
Integrated with sensors,processors,and radio frequency(RF)communication modules,intelligent bearing could achieve the autonomous perception and autonomous decision-making,guarantying the safety and reliability during ... Integrated with sensors,processors,and radio frequency(RF)communication modules,intelligent bearing could achieve the autonomous perception and autonomous decision-making,guarantying the safety and reliability during their use.However,because of the resource limitations of the end device,processors in the intelligent bearing are unable to carry the computational load of deep learning models like convolutional neural network(CNN),which involves a great amount of multiplicative operations.To minimize the computation cost of the conventional CNN,based on the idea of AdderNet,a 1-D adder neural network with a wide first-layer kernel(WAddNN)suitable for bearing fault diagnosis is proposed in this paper.The proposed method uses the l1-norm distance between filters and input features as the output response,thus making the whole network almost free of multiplicative operations.The whole model takes the original signal as the input,uses a wide kernel in the first adder layer to extract features and suppress the high frequency noise,and then uses two layers of small kernels for nonlinear mapping.Through experimental comparison with CNN models of the same structure,WAddNN is able to achieve a similar accuracy as CNN models with significantly reduced computational cost.The proposed model provides a new fault diagnosis method for intelligent bearings with limited resources. 展开更多
关键词 adder neural network convolutional neural network fault diagnosis intelligent bearings l1-norm distance
下载PDF
Intelligent Prediction Approach for Diabetic Retinopathy Using Deep Learning Based Convolutional Neural Networks Algorithm by Means of Retina Photographs 被引量:2
15
作者 G.Arun Sampaul Thomas Y.Harold Robinson +3 位作者 E.Golden Julie Vimal Shanmuganathan Seungmin Rho Yunyoung Nam 《Computers, Materials & Continua》 SCIE EI 2021年第2期1613-1629,共17页
Retinopathy is a human eye disease that causes changes in retinal blood vessels that leads to bleed,leak fluid and vision impairment.Symptoms of retinopathy are blurred vision,changes in color perception,red spots,and... Retinopathy is a human eye disease that causes changes in retinal blood vessels that leads to bleed,leak fluid and vision impairment.Symptoms of retinopathy are blurred vision,changes in color perception,red spots,and eye pain and it cannot be detected with a naked eye.In this paper,a new methodology based on Convolutional Neural Networks(CNN)is developed and proposed to intelligent retinopathy prediction and give a decision about the presence of retinopathy with automatic diabetic retinopathy screening with accurate diagnoses.The CNN model is trained by different images of eyes that have retinopathy and those which do not have retinopathy.The fully connected layers perform the classification process of the images from the dataset with the pooling layers minimize the coherence among the adjacent layers.The feature loss factor increases the label value to identify the patterns with the kernel-based matching.The performance of the proposed model is compared with the related methods of DREAM,KNN,GD-CNN and SVM.Experimental results show that the proposed CNN performs better. 展开更多
关键词 Convolutional neural networks dental diagnosis image recognition diabetic retinopathy detection
下载PDF
Influence of Blurred Ways on Pattern Recognition of a Scale-Free Hopfield Neural Network
16
作者 常文利 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第1期195-199,共5页
We investigate the influence of blurred ways on pattern recognition of a Barabasi-Albert scale-free Hopfield neural network (SFHN) with a small amount of errors. Pattern recognition is an important function of infor... We investigate the influence of blurred ways on pattern recognition of a Barabasi-Albert scale-free Hopfield neural network (SFHN) with a small amount of errors. Pattern recognition is an important function of information processing in brain. Due to heterogeneous degree of scale-free network, different blurred ways have different influences on pattern recognition with same errors. Simulation shows that among partial recognition, the larger loading ratio (the number of patterns to average degree P/ (k) ) is, the smaller the overlap of SFHN is. The influence of directed (large) way is largest and the directed (small) way is smallest while random way is intermediate between them. Under the ratio of the numbers of stored patterns to the size of the network PIN is less than O. 1 conditions, there are three families curves of the overlap corresponding to directed (small), random and directed (large) blurred ways of patterns and these curves are not associated with the size of network and the number of patterns. This phenomenon only occurs in the SFHN. These conclusions are benefit for understanding the relation between neural network structure and brain function. 展开更多
关键词 scale-free neural network pattern recognition blurred ways
下载PDF
Transfer Learning-based Computer-aided Diagnosis System for Predicting Grades of Diabetic Retinopathy
17
作者 Qaisar Abbas Mostafa E.A.Ibrahim Abdul Rauf Baig 《Computers, Materials & Continua》 SCIE EI 2022年第6期4573-4590,共18页
Diabetic retinopathy(DR)diagnosis through digital fundus images requires clinical experts to recognize the presence and importance of many intricate features.This task is very difficult for ophthalmologists and timeco... Diabetic retinopathy(DR)diagnosis through digital fundus images requires clinical experts to recognize the presence and importance of many intricate features.This task is very difficult for ophthalmologists and timeconsuming.Therefore,many computer-aided diagnosis(CAD)systems were developed to automate this screening process ofDR.In this paper,aCAD-DR system is proposed based on preprocessing and a pre-train transfer learningbased convolutional neural network(PCNN)to recognize the five stages of DR through retinal fundus images.To develop this CAD-DR system,a preprocessing step is performed in a perceptual-oriented color space to enhance the DR-related lesions and then a standard pre-train PCNN model is improved to get high classification results.The architecture of the PCNN model is based on three main phases.Firstly,the training process of the proposed PCNN is accomplished by using the expected gradient length(EGL)to decrease the image labeling efforts during the training of the CNN model.Secondly,themost informative patches and images were automatically selected using a few pieces of training labeled samples.Thirdly,the PCNN method generated useful masks for prognostication and identified regions of interest.Fourthly,the DR-related lesions involved in the classification task such as micro-aneurysms,hemorrhages,and exudates were detected and then used for recognition of DR.The PCNN model is pre-trained using a high-end graphical processor unit(GPU)on the publicly available Kaggle benchmark.The obtained results demonstrate that the CAD-DR system outperforms compared to other state-of-the-art in terms of sensitivity(SE),specificity(SP),and accuracy(ACC).On the test set of 30,000 images,the CAD-DR system achieved an average SE of 93.20%,SP of 96.10%,and ACC of 98%.This result indicates that the proposed CAD-DR system is appropriate for the screening of the severity-level of DR. 展开更多
关键词 Diabetic Retinopathy retinal fundus images computer-aided diagnosis system deep learning transfer learning convolutional neural network
下载PDF
Camera Independent Motion Deblurring in Videos Using Machine Learning
18
作者 Tyler Welander Ronald Marsh Bryce Gruber 《Journal of Intelligent Learning Systems and Applications》 2023年第4期89-107,共19页
In this paper, we will be looking at our efforts to find a novel solution for motion deblurring in videos. In addition, our solution has the requirement of being camera-independent. This means that the solution is ful... In this paper, we will be looking at our efforts to find a novel solution for motion deblurring in videos. In addition, our solution has the requirement of being camera-independent. This means that the solution is fully implemented in software and is not aware of any of the characteristics of the camera. We found a solution by implementing a Convolutional Neural Network-Long Short Term Memory (CNN-LSTM) hybrid model. Our CNN-LSTM is able to deblur video without any knowledge of the camera hardware. This allows it to be implemented on any system that allows the camera to be swapped out with any camera model with any physical characteristics. 展开更多
关键词 Motion blur VIDEO Convolutional neural Network Long Short-Term Memory AirSim OPENCV
下载PDF
Research on remote hydro-generator sets diagnosis system 被引量:1
19
作者 陈喜阳 熊浩 +1 位作者 吴炜 张克危 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第1期73-76,共4页
A type of remote monitoring and diagnosis system is brought forward which based on Matlab Web Server.Firstly,wavelet packet decomposition is introduced to acquire energy features of which reflect hydrogenerator sets p... A type of remote monitoring and diagnosis system is brought forward which based on Matlab Web Server.Firstly,wavelet packet decomposition is introduced to acquire energy features of which reflect hydrogenerator sets performance to be Feature Parameter.Then these Feature Parameters can be adopted as BP Neural Network input variable to realize fault diagnosis.Most of all,it is the first time to adopt Matlab Web Server to hydro-generator sets faults diagnosis field to implement distributed remote monitoring and diagnosis system.Therefore,remote diagnosis application is independent from the OS used on server side.There is no need for software maintenance by clients.And clients can finish remote diagnosis by Web Browser and without installation of Matlab-software.Client users can monitor and diagnose hydro-generator sets by Browser.Finally,further research work is pointed out such as hydro-generator sets fault modeling,accelerating BP Neural Network learning speed and convergence property,improving data transfer speed of Matlab Web Server to meet the needs of real-time diagnosis for hydropower generator sets. 展开更多
关键词 wavelet packet energy feature BP neural Network remote monitoring and diagnosis Matlab Web Server hydro-generator sets
下载PDF
Fault Detection and Isolation Based on Neural Networks Case Study: Steam Turbine 被引量:1
20
作者 D. Benazzouz S. Benammar S. Adjerid 《Energy and Power Engineering》 2011年第4期513-516,共4页
The real-time fault diagnosis system is very important for steam turbine generator set due serious fault results in a reduced amount of electricity supply in power plant. A novel real-time fault diagnosis system is pr... The real-time fault diagnosis system is very important for steam turbine generator set due serious fault results in a reduced amount of electricity supply in power plant. A novel real-time fault diagnosis system is proposed by using Levenberg-Marquardt algorithm related to tuning parameters of Artificial Neural Network (ANN). The model of novel fault diagnosis system by using ANN are built and analyzed. Cases of the diagnosis are simulated. The results show that the real-time fault diagnosis system is of high accuracy and quick convergence. It is also found that this model is feasible in real-time fault diagnosis. The steam turbine is used as a power generator by SONELGAZ, an Algerian company located at Cap Djinet town in Boumerdes district. We used this turbine as our main target for the purpose of this analysis. After deep investigation, while keeping our focus on the most sensitive parts within the turbine, the weakest and the strongest points of the system were identified. Those are the points mostly adequate for failure simulations and at which the designed system will be better positioned for irregularities detection during the production process. 展开更多
关键词 FAILURE diagnosis Artificial neural networks ISOLATION STEAM TURBINE
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部