期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Conductive polymer scaffolds to improve neural recovery 被引量:1
1
作者 Shang Song Paul M.George 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第12期1976-1978,共3页
Injuries to the nervous system manifest in various forms ranging from stroke to trauma(i.e.,motor vehicle accidents,combats)to diabetic neuropathy as well as many other neurological diseases.Nerve regeneration remai... Injuries to the nervous system manifest in various forms ranging from stroke to trauma(i.e.,motor vehicle accidents,combats)to diabetic neuropathy as well as many other neurological diseases.Nerve regeneration remains a complex biological process that is challenging to address clinically.There is no effective medical treatment for central nervous system repair. 展开更多
关键词 Conductive polymer scaffolds improve neural recovery
下载PDF
Impact of dietary supplementation of one-carbon metabolism on neural recovery
2
作者 Joshua T.Emmerson Lauren K.Murray Nafisa M.Jadavji 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第7期1075-1076,共2页
In the cell,one-carbon metabolism modulates nucleotide synthesis,DNA repair,as well as methylation through the reduction of homocysteine(Figure 1).High levels of plasma homocysteine have been associated with negativ... In the cell,one-carbon metabolism modulates nucleotide synthesis,DNA repair,as well as methylation through the reduction of homocysteine(Figure 1).High levels of plasma homocysteine have been associated with negative health outcomes in humans(Murray et al.,2017).Folates,B-vitamins,are a major component of one-carbon metabolism and play an important role in brain function.Specifically,they are involved in nucleotide synthesis,DNA repair,methylation,second messenger systems,ion channels,protein, 展开更多
关键词 of ET is as Impact of dietary supplementation of one-carbon metabolism on neural recovery into been were that on MTHFR for DHFR
下载PDF
Reorganization of spinal neural circuitry and functional recovery after spinal cord injury 被引量:1
3
作者 Raffaele Nardone Eugen Trinka 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第2期201-202,共2页
The ability of the adult central nervous system to reorganize its circuits over time is the key to understand the functional improvement in subjects with spinal cord injury (SCI). Adaptive changes within spared neur... The ability of the adult central nervous system to reorganize its circuits over time is the key to understand the functional improvement in subjects with spinal cord injury (SCI). Adaptive changes within spared neuronal circuits may occur at cortical, brainstem, or spinal cord level, both above and below a spinal lesion (Bareyre et al., 2004). At each level the reorganization is a very dynamic process, and its degree is highly variable, depending on several factors, including the age of the subject when SCI has occurred and the rehabilitative therapy. The use of electrophysiological techniques to assess these functional changes in neural networks is of great interest, because invasive methodologies as employed in preclinical models can obviously not be used in clinical studies. 展开更多
关键词 SCI Reorganization of spinal neural circuitry and functional recovery after spinal cord injury TSR
下载PDF
Recovery and grade prediction of pilot plant flotation column concentrate by a hybrid neural genetic algorithm 被引量:6
4
作者 F. Nakhaei M.R. Mosavi A. Sam 《International Journal of Mining Science and Technology》 SCIE EI 2013年第1期69-77,共9页
Today flotation column has become an acceptable means of froth flotation for a fairly broad range of applications, in particular the cleaning of sulfides. Even after having been used for several years in mineral proce... Today flotation column has become an acceptable means of froth flotation for a fairly broad range of applications, in particular the cleaning of sulfides. Even after having been used for several years in mineral processing plants, the full potential of the flotation column process is still not fully exploited. There is no prediction of process performance for the complete use of available control capabilities. The on-line estimation of grade usually requires a significant amount of work in maintenance and calibration of on-stream analyzers, in order to maintain good accuracy and high availability. These difficulties and the high cost of investment and maintenance of these devices have encouraged the approach of prediction of metal grade and recovery. In this paper, a new approach has been proposed for metallurgical performance prediction in flotation columns using Artificial Neural Network (ANN). Despite of the wide range of applications and flexibility of NNs, there is still no general framework or procedure through which the appropriate network for a specific task can be designed. Design and structural optimization of NNs is still strongly dependent upon the designer's experience. To mitigate this problem, a new method for the auto-design of NNs was used, based on Genetic Algorithm (GA). The new proposed method was evaluated by a case study in pilot plant flotation column at Sarcheshmeh copper plant. The chemical reagents dosage, froth height, air, wash water flow rates, gas holdup, Cu grade in the rougher feed, flotation column feed, column tail and final concentrate streams were used to the simulation by GANN. In this work, multi-layer NNs with Back Propagation (BP) algorithm with 8-17-10-2 and 8- 13-6-2 arrangements have been applied to predict the Cu and Mo grades and recoveries, respectively. The correlation coefficient (R) values for the testing sets for Cu and Mo grades were 0.93, 0.94 and for their recoveries were 0.93, 0.92, respectively. The results discussed in this paper indicate that the proposed model can be used to predict the Cu and Mo grades and recoveries with a reasonable error. 展开更多
关键词 Artificial neural network Genetic algorithm Flotation column Grade recovery Prediction
下载PDF
The potential of neural transplantation for brain repair and regeneration following traumatic brain injury 被引量:3
5
作者 Dong Sun 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第1期18-22,共5页
Traumatic brain injury is a major health problem worldwide. Currently, there is no effective treatment to improve neural structural repair and functional recovery of patients in the clinic. Cell transplantation is a p... Traumatic brain injury is a major health problem worldwide. Currently, there is no effective treatment to improve neural structural repair and functional recovery of patients in the clinic. Cell transplantation is a potential strategy to repair and regenerate the injured brain. This review article summarized recent development in cell transplantation studies for post-traumatic brain injury brain repair with varying types of cell sources. It also discussed the potential of neural transplantation to repair/promote recovery of the injured brain following traumatic brain injury. 展开更多
关键词 traumatic brain injury stem cells neural transplantation regeneration functional recovery
下载PDF
Diffusion tensor tractography studies on mechanisms of recovery of injured fornix 被引量:3
6
作者 Sung Ho Jang Han Do Lee 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第10期1742-1744,共3页
The fornix,which connects the medial temporal lobe and the medial diencephalon,is involved in episodic memory as an important part of the Papez circuit.The mechanisms of recovery of an injured fornix revealed by diffu... The fornix,which connects the medial temporal lobe and the medial diencephalon,is involved in episodic memory as an important part of the Papez circuit.The mechanisms of recovery of an injured fornix revealed by diffusion tensor tractography in the five studies are summarized as follows:1) recovery through the nerve tract from an injured fornical crus to the medial temporal lobe via the normal pathway of the fornical crus;2)recovery through the nerve tract originating from an ipsi-lesional fornical body connected to the ipsi-lesional medial temporal lobe via the splenium of the corpus callosum;3) recovery through the nerve tract from the ipsi-lesional fornical body extending to the contra-lesional medial temporal lobe via the splenium of the corpus callosum;4) recovery through the nerve tract originating from the ipsi-lesional fornical column connected to the ipsi-lesional medial temporal lobe;and 5) recovery through the nerve tract originating from the contra-lesional fornical column connected to the ipsi-lesional medial temporal lobe via the contra-lesional medial temporal lobe and the splenium of the corpus callosum.These diffusion tensor tractography studies on mechanisms of recovery of injured fornical crus appeared to provide useful information for clinicians caring for patients with brain injury,however,studies on this topic are still in the beginning stages. 展开更多
关键词 nerve regeneration fornix diffusion tensor tractography recovery mechanism memory assessment scale Papez neural regeneration
下载PDF
Bone marrow mesenchymal stem cells transplantation promotes the release of endogenous erythropoietin after ischemic stroke 被引量:9
7
作者 Wen Lv Wen-yu Li +2 位作者 Xiao-yan Xu Hong Jiang Oh Yong Bang 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第8期1265-1270,共6页
This study investigated whether bone marrow mesenchymal stem cell(BMSC) transplantation protected ischemic cerebral injury by stimulating endogenous erythropoietin. The model of ischemic stroke was established in ra... This study investigated whether bone marrow mesenchymal stem cell(BMSC) transplantation protected ischemic cerebral injury by stimulating endogenous erythropoietin. The model of ischemic stroke was established in rats through transient middle cerebral artery occlusion. Twenty-four hours later, 1 × 106 human BMSCs(h BMSCs) were injected into the tail vein. Fourteen days later, we found that h BMSCs promoted the release of endogenous erythropoietin in the ischemic region of rats. Simultaneously, 3 μg/d soluble erythropoietin receptor(s EPOR) was injected into the lateral ventricle, and on the next 13 consecutive days. s EPOR blocked the release of endogenous erythropoietin. The neurogenesis in the subventricular zone was less in the h BMSCs + s EPOR group than in the h BMSCs + heat-denatured s EPOR group. The adhesive-removal test result and the modified Neurological Severity Scores(m NSS) were lower in the h BMSCs + s EPOR group than in the heat-denatured s EPOR group. The adhesive-removal test result and m NSS were similar between the h BMSCs + heat-denatured s EPOR group and the h BMSCs + s EPOR group. These findings confirm that BMSCs contribute to neurogenesis and improve neurological function by promoting the release of endogenous erythropoietin following ischemic stroke. 展开更多
关键词 nerve regeneration stem cells erythropoietin ischemic stroke erythropoietin receptor cell proliferation cytokine Brd U functional recovery NSFC grant neural regeneration
下载PDF
Femoral nerve regeneration and its accuracy under different injury mechanisms 被引量:1
8
作者 Aikeremujiang.Muheremu Qiang Ao +2 位作者 Yu Wang Peng Cao Jiang Peng 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第10期1669-1673,共5页
Surgical accuracy has greatly improved with the advent of microsurgical techniques. However, complete functional recovery after peripheral nerve injury has not been achieved to date. The mechanisms hindering accurate ... Surgical accuracy has greatly improved with the advent of microsurgical techniques. However, complete functional recovery after peripheral nerve injury has not been achieved to date. The mechanisms hindering accurate regeneration of damaged axons after peripheral nerve injury are in urgent need of exploration. The present study was designed to explore the mechanisms of peripheral nerve regeneration after different types of injury. Femoral nerves of rats were injured by crushing or freezing. At 2, 3, 6, and 12 weeks after injury, axons were retrogradely labeled using 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate(Dil) and True Blue, and motor and sensory axons that had regenerated at the site of injury were counted. The number and percentage of Dil-labeled neurons in the anterior horn of the spinal cord increased over time. No significant differences were found in the number of labeled neurons between the freeze and crush injury groups at any time point. Our results confirmed that the accuracy of peripheral nerve regeneration increased with time, after both crush and freeze injury, and indicated that axonal regeneration accuracy was still satisfactory after freezing, despite the prolonged damage. 展开更多
关键词 nerve regeneration peripheral nerve injury chemotactic regeneration retrograde labeling selective nerve regeneration functional recovery NSFC grant neural regeneration
下载PDF
Stimulation strategies for electrical and magnetic modulation of cells and tissues
9
作者 Suleyman A.Omer Kaitlyn H.McKnight +1 位作者 Lucas I.Young Shang Song 《Cell Regeneration》 CAS 2023年第1期174-192,共19页
Electrical phenomena play an important role in numerous biological processes including cellular signaling,early embryogenesis,tissue repair and remodeling,and growth of organisms.Electrical and magnetic effects have b... Electrical phenomena play an important role in numerous biological processes including cellular signaling,early embryogenesis,tissue repair and remodeling,and growth of organisms.Electrical and magnetic effects have been studied on a variety of stimulation strategies and cell types regarding cellular functions and disease treatments.In this review,we discuss recent advances in using three different stimulation strategies,namely electrical stimulation via conductive and piezoelectric materials as well as magnetic stimulation via magnetic materials,to modulate cell and tissue properties.These three strategies offer distinct stimulation routes given specific material characteristics.This review will evaluate material properties and biological response for these stimulation strategies with respect to their potential applications in neural and musculoskeletal research. 展开更多
关键词 Stimulation strategy Electrical modulation Stem cells neural recovery Musculoskeletal regeneration CONDUCTIVE Piezoelectric Magnetic Tissue engineering Regenerative medicine
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部