Small nucleolar RNAs (snoRNAs) are a group of non-protein coding RNAs that mainly function in ribosomal RNA (rRNA) and small nuclear RNA (snRNA) modification.
By establishing concept an transient solutions of general nonlinear systems converging to its equilibrium set, long-time behavior of solutions for cellular neural network systems is studied. A stability condition in g...By establishing concept an transient solutions of general nonlinear systems converging to its equilibrium set, long-time behavior of solutions for cellular neural network systems is studied. A stability condition in generalized sense is obtained. This result reported has an important guide to concrete neural network designs.展开更多
In this paper,we present an optimal neuro-control scheme for continuous-time(CT)nonlinear systems with asymmetric input constraints.Initially,we introduce a discounted cost function for the CT nonlinear systems in ord...In this paper,we present an optimal neuro-control scheme for continuous-time(CT)nonlinear systems with asymmetric input constraints.Initially,we introduce a discounted cost function for the CT nonlinear systems in order to handle the asymmetric input constraints.Then,we develop a Hamilton-Jacobi-Bellman equation(HJBE),which arises in the discounted cost optimal control problem.To obtain the optimal neurocontroller,we utilize a critic neural network(CNN)to solve the HJBE under the framework of reinforcement learning.The CNN's weight vector is tuned via the gradient descent approach.Based on the Lyapunov method,we prove that uniform ultimate boundedness of the CNN's weight vector and the closed-loop system is guaranteed.Finally,we verify the effectiveness of the present optimal neuro-control strategy through performing simulations of two examples.展开更多
The robust global exponential stability of a class of interval recurrent neural networks(RNNs) is studied,and a new robust stability criterion is obtained in the form of linear matrix inequality.The problem of robus...The robust global exponential stability of a class of interval recurrent neural networks(RNNs) is studied,and a new robust stability criterion is obtained in the form of linear matrix inequality.The problem of robust stability of interval RNNs is transformed into a problem of solving a class of linear matrix inequalities.Thus,the robust stability of interval RNNs can be analyzed by directly using the linear matrix inequalities(LMI) toolbox of MATLAB.Numerical example is given to show the effectiveness of the obtained results.展开更多
The main proposition of the current investigation is to develop a computational intelligence-based framework which can be used for the real-time estimation of optimum battery state-of-charge (SOC) trajectory in plug...The main proposition of the current investigation is to develop a computational intelligence-based framework which can be used for the real-time estimation of optimum battery state-of-charge (SOC) trajectory in plug-in hybrid electric vehicles (PHEVs). The estimated SOC trajectory can be then employed for an intelligent power management to significantly improve the fuel economy of the vehicle. The devised intelligent SOC trajectory builder takes advantage of the upcoming route information preview to achieve the lowest possible total cost of electricity and fossil fuel. To reduce the complexity of real-time optimization, the authors propose an immune system-based clustering approach which allows categoriz- ing the route information into a predefined number of segments. The intelligent real-time optimizer is also inspired on the basis of interactions in biological immune systems, and is called artificial immune algorithm (AIA). The objective function of the optimizer is derived from a computationally efficient artificial neural network (ANN) which is trained by a database obtained from a high-fidelity model of the vehicle built in the Autonomic software. The simulation results demonstrate that the integration of immune inspired clustering tool, AIA and ANN, will result in a powerful framework which can generate a near global optimum SOC trajectory for the baseline vehicle, that is, the Toyota Prius PHEV. The outcomes of the current investigation prove that by taking advantage of intelligent approaches, it is possible to design a computationally efficient and powerful SOC trajectory builder for the intelligent power management of PHEVs.展开更多
In this paper, multimodel and neural emulators are proposed for uncoupled multivariable nonlinear plants with unknown dynamics. The contributions of this paper are to extend the emulators to multivariable non square s...In this paper, multimodel and neural emulators are proposed for uncoupled multivariable nonlinear plants with unknown dynamics. The contributions of this paper are to extend the emulators to multivariable non square systems and to propose a systematic method to compute the multimodel synthesis parameters. The effectiveness of the proposed emulators is shown through two simulation examples. The obtained results are very satisfactory, they illustrate the performance of both emulators and show the advantages of the multimodel emulator relatively to the neural one.展开更多
This paper considers the output tracking problem for more general classes of stochastic nonlinear systems with unknown control coefficients and driven by noise of unknown covariance. By utilizing the radial basis func...This paper considers the output tracking problem for more general classes of stochastic nonlinear systems with unknown control coefficients and driven by noise of unknown covariance. By utilizing the radial basis function neural network approximation method and backstepping technique, we successfully construct a controller to guarantee the solution process to be bounded in probability.The tracking error signal is 4th-moment semi-globally uniformly ultimately bounded(SGUUB) and can be regulated into a small neighborhood of the origin in probability. A simulation example is given to demonstrate the effectiveness of the control scheme.展开更多
文摘Small nucleolar RNAs (snoRNAs) are a group of non-protein coding RNAs that mainly function in ribosomal RNA (rRNA) and small nuclear RNA (snRNA) modification.
文摘By establishing concept an transient solutions of general nonlinear systems converging to its equilibrium set, long-time behavior of solutions for cellular neural network systems is studied. A stability condition in generalized sense is obtained. This result reported has an important guide to concrete neural network designs.
基金supported by the National Natural Science Foundation of China(61973228,61973330)
文摘In this paper,we present an optimal neuro-control scheme for continuous-time(CT)nonlinear systems with asymmetric input constraints.Initially,we introduce a discounted cost function for the CT nonlinear systems in order to handle the asymmetric input constraints.Then,we develop a Hamilton-Jacobi-Bellman equation(HJBE),which arises in the discounted cost optimal control problem.To obtain the optimal neurocontroller,we utilize a critic neural network(CNN)to solve the HJBE under the framework of reinforcement learning.The CNN's weight vector is tuned via the gradient descent approach.Based on the Lyapunov method,we prove that uniform ultimate boundedness of the CNN's weight vector and the closed-loop system is guaranteed.Finally,we verify the effectiveness of the present optimal neuro-control strategy through performing simulations of two examples.
基金Supported by the Natural Science Foundation of Shandong Province (ZR2010FM038,ZR2010FL017)
文摘The robust global exponential stability of a class of interval recurrent neural networks(RNNs) is studied,and a new robust stability criterion is obtained in the form of linear matrix inequality.The problem of robust stability of interval RNNs is transformed into a problem of solving a class of linear matrix inequalities.Thus,the robust stability of interval RNNs can be analyzed by directly using the linear matrix inequalities(LMI) toolbox of MATLAB.Numerical example is given to show the effectiveness of the obtained results.
文摘The main proposition of the current investigation is to develop a computational intelligence-based framework which can be used for the real-time estimation of optimum battery state-of-charge (SOC) trajectory in plug-in hybrid electric vehicles (PHEVs). The estimated SOC trajectory can be then employed for an intelligent power management to significantly improve the fuel economy of the vehicle. The devised intelligent SOC trajectory builder takes advantage of the upcoming route information preview to achieve the lowest possible total cost of electricity and fossil fuel. To reduce the complexity of real-time optimization, the authors propose an immune system-based clustering approach which allows categoriz- ing the route information into a predefined number of segments. The intelligent real-time optimizer is also inspired on the basis of interactions in biological immune systems, and is called artificial immune algorithm (AIA). The objective function of the optimizer is derived from a computationally efficient artificial neural network (ANN) which is trained by a database obtained from a high-fidelity model of the vehicle built in the Autonomic software. The simulation results demonstrate that the integration of immune inspired clustering tool, AIA and ANN, will result in a powerful framework which can generate a near global optimum SOC trajectory for the baseline vehicle, that is, the Toyota Prius PHEV. The outcomes of the current investigation prove that by taking advantage of intelligent approaches, it is possible to design a computationally efficient and powerful SOC trajectory builder for the intelligent power management of PHEVs.
文摘In this paper, multimodel and neural emulators are proposed for uncoupled multivariable nonlinear plants with unknown dynamics. The contributions of this paper are to extend the emulators to multivariable non square systems and to propose a systematic method to compute the multimodel synthesis parameters. The effectiveness of the proposed emulators is shown through two simulation examples. The obtained results are very satisfactory, they illustrate the performance of both emulators and show the advantages of the multimodel emulator relatively to the neural one.
基金supported by National Natural Science Foundation of China(Nos.61573172,61305149 and 61403174)333 High-level Talents Training Program in Jiangsu Province(No.BRA2015352)Program for Fundamental Research of Natural Sciences in Universities of Jiangsu Province(No.15KJB510011)
文摘This paper considers the output tracking problem for more general classes of stochastic nonlinear systems with unknown control coefficients and driven by noise of unknown covariance. By utilizing the radial basis function neural network approximation method and backstepping technique, we successfully construct a controller to guarantee the solution process to be bounded in probability.The tracking error signal is 4th-moment semi-globally uniformly ultimately bounded(SGUUB) and can be regulated into a small neighborhood of the origin in probability. A simulation example is given to demonstrate the effectiveness of the control scheme.