期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
New small-molecule drug design strategies for fighting resistant influenza A 被引量:8
1
作者 Zuyuan Shen Kaiyan Lou Wei Wang 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2015年第5期419-430,共12页
Influenza A virus is the major cause of seasonal or pandemic flu worldwide. Two main treatment strategies vaccination and small molecule anti-influenza drugs are currently available. As an effective vaccine usually ta... Influenza A virus is the major cause of seasonal or pandemic flu worldwide. Two main treatment strategies vaccination and small molecule anti-influenza drugs are currently available. As an effective vaccine usually takes at least 6 months to develop, anti-influenza small molecule drugs are more effective for the first line of protection against the virus during an epidemic outbreak, especially in the early stage. Two major classes of anti-influenza drugs currently available are admantane-based M2 protein Mockers (amantadine and rimantadine) and neuraminidase (NA) inhibitors (oseltamivir, zanamivir, and peramivir). However, the continuous evolvement of influenza A virus and the rapid emergence of resistance to current drugs, particularly to amantadine, rimantadine, and oseltamivir, have raised an urgent need for developing new anti -influenza drugs against resistant forms of influenza A virus. In this review, we first give a brief introduction of the molecular mechanisms behind resistance, and then discuss new strategies in small-molecule drug development to overcome influenza A virus resistance targeting mutant M2 proteins and neuraminidases, and other viral proteins not associated with current drugs. (c) 2015 Chinese Pharmaceutical Association and Institute of Materia Medics, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. 展开更多
关键词 Influenza A virus Drug discovery RESISTANCE M2 ion channel neuramindase
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部