期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
金免疫层析试条OD-浓度曲线的神经动力学拟合
1
作者 熊保平 甘振华 +1 位作者 高跃明 杜民 《中国测试》 CAS 北大核心 2016年第11期126-130,共5页
针对金免疫层析试条定量检测系统中OD(光密度)-浓度的拟合曲线会出现检测值与实际值偏差较大,容易导致定性结果错误的情况,提出以最大绝对误差最小为评价指标的曲线拟合方案,并转化为相应的约束优化问题使用神经动力学优化算法进行求解... 针对金免疫层析试条定量检测系统中OD(光密度)-浓度的拟合曲线会出现检测值与实际值偏差较大,容易导致定性结果错误的情况,提出以最大绝对误差最小为评价指标的曲线拟合方案,并转化为相应的约束优化问题使用神经动力学优化算法进行求解。仿真数据实验表明神经动力学曲线拟合方法明显优于插值法和三次样条,与最小二乘法相比在等同条件下50次曲线拟合的平均最大绝对误差降低14%;通过金免疫层析试条定量检测仪的一组标定数据实验表明三次多项式基本符合OD值与浓度正相关关系,且此时神经动力学拟合曲线的最大误差与最小二乘法相比降低25%;实验结果表明该文提出的神经动力学曲线拟合方法结果收敛稳定,且有效降低最大绝对误差,为金免疫层析试条定量检测提供一种新的较简单和精确的曲线拟合方法。 展开更多
关键词 金免疫层析试条 定量检测 曲线拟合 约束优化 神经动力学优化算法 最小二乘法
下载PDF
基于模糊神经算法的区域地下水盐分动态预测 被引量:6
2
作者 余世鹏 杨劲松 +2 位作者 刘广明 姚荣江 王相平 《农业工程学报》 EI CAS CSCD 北大核心 2014年第18期142-150,共9页
为探讨前馈型人工神经网络BP-ANN(back propagation artificial neural network)和模糊神经NF(neuro-fuzzy)2种神经网络算法在区域地下水盐分动态预测中的应用过程与效果,首先通过经典统计分析确定区域地下水盐分动态的主要驱动因子以... 为探讨前馈型人工神经网络BP-ANN(back propagation artificial neural network)和模糊神经NF(neuro-fuzzy)2种神经网络算法在区域地下水盐分动态预测中的应用过程与效果,首先通过经典统计分析确定区域地下水盐分动态的主要驱动因子以及可用的模型输入因子组合,采用"试错法"确定神经网络模型的最优结构,进而开展地下水盐分中长期动态的有效模拟预测。结果表明,在长江河口寅阳和大兴地区以降水动态为单输入的NF(5-gbellmf-160)和以降水与内河水盐分动态为双输入的NF(4-gaussmf-100)为最优预测模型。研究表明神经网络模型对地下水盐分动态的预测精度优于常规线性模型,其中,NF、BP-ANN、线性模型在寅阳测点的预测相关系数分别为0.565、0.445、0.261,在大兴测点的预测相关系数分别为0.886、0.784、0.543。与BP-ANN、线性模型相比,基于模糊神经算法的NF模型具有更好的误差纠错和仿真能力,在寅阳和大兴测点的预测误差分别降低了30%以上和50%以上。相关研究结果在区域水盐动态科学预警研究领域有较好地应用前景。 展开更多
关键词 盐分 土壤 地下水盐分动态 人工神经网络 模糊神经算法 最优模型参数 中长期预测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部