期刊文献+
共找到7,102篇文章
< 1 2 250 >
每页显示 20 50 100
Recombinant chitinase-3-like protein 1 alleviates learning and memory impairments via M2 microglia polarization in postoperative cognitive dysfunction mice
1
作者 Yujia Liu Xue Han +6 位作者 Yan Su Yiming Zhou Minhui Xu Jiyan Xu Zhengliang Ma Xiaoping Gu Tianjiao Xia 《Neural Regeneration Research》 SCIE CAS 2025年第9期2727-2736,共10页
Postoperative cognitive dysfunction is a seve re complication of the central nervous system that occurs after anesthesia and surgery,and has received attention for its high incidence and effect on the quality of life ... Postoperative cognitive dysfunction is a seve re complication of the central nervous system that occurs after anesthesia and surgery,and has received attention for its high incidence and effect on the quality of life of patients.To date,there are no viable treatment options for postoperative cognitive dysfunction.The identification of postoperative cognitive dysfunction hub genes could provide new research directions and therapeutic targets for future research.To identify the signaling mechanisms contributing to postoperative cognitive dysfunction,we first conducted Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of the Gene Expression Omnibus GSE95426 dataset,which consists of mRNAs and long non-coding RNAs differentially expressed in mouse hippocampus3 days after tibial fracture.The dataset was enriched in genes associated with the biological process"regulation of immune cells,"of which Chill was identified as a hub gene.Therefore,we investigated the contribution of chitinase-3-like protein 1 protein expression changes to postoperative cognitive dysfunction in the mouse model of tibial fractu re surgery.Mice were intraperitoneally injected with vehicle or recombinant chitinase-3-like protein 124 hours post-surgery,and the injection groups were compared with untreated control mice for learning and memory capacities using the Y-maze and fear conditioning tests.In addition,protein expression levels of proinflammatory factors(interleukin-1βand inducible nitric oxide synthase),M2-type macrophage markers(CD206 and arginase-1),and cognition-related proteins(brain-derived neurotropic factor and phosphorylated NMDA receptor subunit NR2B)were measured in hippocampus by western blotting.Treatment with recombinant chitinase-3-like protein 1 prevented surgery-induced cognitive impairment,downregulated interleukin-1βand nducible nitric oxide synthase expression,and upregulated CD206,arginase-1,pNR2B,and brain-derived neurotropic factor expression compared with vehicle treatment.Intraperitoneal administration of the specific ERK inhibitor PD98059 diminished the effects of recombinant chitinase-3-like protein 1.Collectively,our findings suggest that recombinant chitinase-3-like protein 1 ameliorates surgery-induced cognitive decline by attenuating neuroinflammation via M2 microglial polarization in the hippocampus.Therefore,recombinant chitinase-3-like protein1 may have therapeutic potential fo r postoperative cognitive dysfunction. 展开更多
关键词 Chil1 hippocampus learning and memory M2 microglia NEUROINFLAMMATION postoperative cognitive dysfunction(POCD) recombinant CHI3L1
下载PDF
Astrocytic endothelin-1 overexpression impairs learning and memory ability in ischemic stroke via altered hippocampal neurogenesis and lipid metabolism 被引量:5
2
作者 Jie Li Wen Jiang +9 位作者 Yuefang Cai Zhenqiu Ning Yingying Zhou Chengyi Wang Sookja Ki Chung Yan Huang Jingbo Sun Minzhen Deng Lihua Zhou Xiao Cheng 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期650-656,共7页
Vascular etiology is the second most prevalent cause of cognitive impairment globally.Endothelin-1,which is produced and secreted by endothelial cells and astrocytes,is implicated in the pathogenesis of stroke.However... Vascular etiology is the second most prevalent cause of cognitive impairment globally.Endothelin-1,which is produced and secreted by endothelial cells and astrocytes,is implicated in the pathogenesis of stroke.However,the way in which changes in astrocytic endothelin-1 lead to poststroke cognitive deficits following transient middle cerebral artery occlusion is not well understood.Here,using mice in which astrocytic endothelin-1 was overexpressed,we found that the selective overexpression of endothelin-1 by astrocytic cells led to ischemic stroke-related dementia(1 hour of ischemia;7 days,28 days,or 3 months of reperfusion).We also revealed that astrocytic endothelin-1 overexpression contributed to the role of neural stem cell proliferation but impaired neurogenesis in the dentate gyrus of the hippocampus after middle cerebral artery occlusion.Comprehensive proteome profiles and western blot analysis confirmed that levels of glial fibrillary acidic protein and peroxiredoxin 6,which were differentially expressed in the brain,were significantly increased in mice with astrocytic endothelin-1 overexpression in comparison with wild-type mice 28 days after ischemic stroke.Moreover,the levels of the enriched differentially expressed proteins were closely related to lipid metabolism,as indicated by Kyoto Encyclopedia of Genes and Genomes pathway analysis.Liquid chromatography-mass spectrometry nontargeted metabolite profiling of brain tissues showed that astrocytic endothelin-1 overexpression altered lipid metabolism products such as glycerol phosphatidylcholine,sphingomyelin,and phosphatidic acid.Overall,this study demonstrates that astrocytic endothelin-1 overexpression can impair hippocampal neurogenesis and that it is correlated with lipid metabolism in poststroke cognitive dysfunction. 展开更多
关键词 astrocytic endothelin-1 dentate gyrus differentially expressed proteins HIPPOCAMPUS ischemic stroke learning and memory deficits lipid metabolism neural stem cells NEUROGENESIS proliferation
下载PDF
Tree shrew models:A chronic social defeat model of depression and a one-trial captive conditioning model of learning and memory 被引量:22
3
作者 王静 周启心 +2 位作者 田孟 杨跃雄 徐林 《Zoological Research》 CAS CSCD 北大核心 2011年第1期24-30,共7页
Recent genome studies indicate that tree shrew is in the order or a closest sister of primates,and thus may be one of the best animals to model human diseases.In this paper,we report on a social defeat model of depres... Recent genome studies indicate that tree shrew is in the order or a closest sister of primates,and thus may be one of the best animals to model human diseases.In this paper,we report on a social defeat model of depression in tree shrew(Tupaia belangeri chinensis).Two male tree shrews were housed in a pair-cage consisting of two independent cages separated by a wire mesh partition with a door connecting the two cages.After one week adaptation,the connecting door was opened and a brief fighting occurs between the two male tree shrews and this social conflict session consisted of 1 h direct conflict(fighting) and 23 h indirect influence(e.g.smell,visual cues) per day for 21 days.The defeated tree shrew was considered the subordinate.Compared with na?ve animals,subordinate tree shrews at the final week of social conflict session showed alterations in body weight,locomotion,avoidance behavior and urinary cortisol levels.Remarkably,these alterations persisted for over two weeks.We also report on a novel captive conditioning model of learning and memory in tree shrew.An automatic trapping cage was placed in a small closed room with a freely-moving tree shrew.For the first four trials,the tree shrew was not trapped when it entered the cage and ate the bait apple,but it was trapped and kept in the cage for 1 h on the fifth trial.Latency was defined as the time between release of the tree shrew and when it entered the captive cage.Latencies during the five trials indicated adaptation.A test trial 24 h later was used to measure whether the one-trial trapping during the fifth trial could form captive memory.Tree shrews showed much longer trapping latencies in the test trial than the adaptation trials.The N-methyl-d-aspartate(NMDA) receptor antagonist MK-801(0.2 mg/kg,i.p.),known to prevent the formation of memory,did not affect latencies in the adaptation trails,but did block captive memory as it led to much shorter trapping latencies compared to saline treatment in the test trial.These results demonstrate a chronic social defeat model of depression and a novel one-trial captive conditioning model for learning and memory in tree shrews,which are important for mechanism studies of depression,learning,memory,and preclinical evaluation for new antidepressants. 展开更多
关键词 Social defeat DEPRESSION Captive conditioning learning and memory Tree shrew
下载PDF
Impacts of Passive Smoking on Learning and Memory Ability of Mouse Offsprings and Intervention by Antioxidants 被引量:4
4
作者 JIE YANG LI-NA JIANG +8 位作者 ZHEN-LI YUAN Yu-FEIZHENG Lu WANG MIN JI ZHI-QIANG SHEN XIN-WEI WANG QIANG MA ZHU-GE XI JUN-WEN LI 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2008年第2期144-149,共6页
Objective To determine the impact of passive smoking and the protective effect of antioxidants such as vitamin E and quercetin on learning and memory ability of mouse offsprings. Methods A passive smoking model of pre... Objective To determine the impact of passive smoking and the protective effect of antioxidants such as vitamin E and quercetin on learning and memory ability of mouse offsprings. Methods A passive smoking model of pregnant mice was established. Learning and memory ability was evaluated by the water maze test and long term potentiation (LTP). Nitric oxide (NO), content, nitric oxide synthase (NOS), acetylcholinesteras (Ache) activity in brain, vitamin E concentration, and reactive oxygen species (ROS) in serum were determined. The latency period (the time during which the mice swim from the starting position to the ending position) and errors (the number of mice entering the blind end) in control and antioxidant intervention groups were compared with those in the smoke exposure group after 6 days. Results The latency period as well as errors in the air, control diet, tobacco smoke (TS), and vitamin E diet groups were decreased significantly as compared with the TS and control diet groups (P〈O.05). LTP was restrained in the TS and control diet groups. LTP in all the antioxidant diet groups was significantly increased compared with the TS and control diet groups. In addition, NOS and acetylcholinesteras (Ache) activitiy was significantly higher in the TS and control diet groups than in the air and control diet group. NO content was not significantly different among the different groups, and significantly lower in the TS and vitamin E diet groups than in the TS group, control diet group, quercetin diet group, and mixture diet group (P〈0.05). Vitamin E concentration and ROS activity in serum were correlated with the outcome of water maze and LTP. Conclusion Passive smoking reduces LTP formation by disturbing the hippocampus function of mice, by decreasing NOS (especially vitamin E) partially improve the learning and memory smoke during pregnancy. and Ache activity and increasing NO content. Antioxidants ability of offsprings whose mothers are exposed to tobacco 展开更多
关键词 Passive smoking Mice offspring learning and memory ability Long term potentiation Antioxidant intervention
下载PDF
Protective Effect of Mulberry Extract against Pb-induced Learning and Memory Deficits in Mice 被引量:2
5
作者 CHEN Yao LI Qian +8 位作者 ZOU Ye ZHOU Zhao Xiang FENG Wei Wei BAO Yong Tuan MA Rui Hong JI Peng Cheng WU Jiang YANG Liu Qing WU Xiang Yang 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2014年第1期70-75,共6页
Lead (Pb) is ubiquitous in the environment, and low-level Pb exposure can cause neurotoxicity and irreversible damage to children's cognition, learning and memory ability. Nutritional intervention is an effective m... Lead (Pb) is ubiquitous in the environment, and low-level Pb exposure can cause neurotoxicity and irreversible damage to children's cognition, learning and memory ability. Nutritional intervention is an effective method to prevent Pb poisoning. Mul- berry is rich in anthocyanins, possessing protective effects for nerves. This study investigated the neuroprotective effects of mulberry extract (ME) against Pb-induced learning and memory deficits in mice. The results showed that the learning and memory abilities of mice, assessed using the Morris test, improved significantly after treatment with ME at a dose of 100 mg/kg body weight. The level of Pb in the brains of mice in the three ME intervention groups decreased significantly, while NO production and anti-oxidant enzymes were significantly restored. It is suggested that ME inhibits Pb-induced neurotoxicity by reversing Pb-induced alterations in the aspect of neurotoxic effects and improving learning and memory. 展开更多
关键词 PB Protective Effect of Mulberry Extract against Pb-induced learning and memory Deficits in Mice DMSA ME SOD
下载PDF
Effect of tetramethylpyrazine on the spatial learning and memory function of rats after focal cerebral ischemia 被引量:2
6
作者 Jianjun Zhao Yong Liu Xinlin Chen Jianxin Liu Yingfang Tian Pengbo Zhang Qianyan Kang Fen Qiu 《Neural Regeneration Research》 SCIE CAS CSCD 2006年第2期161-165,共5页
BACKGROUND: Tetramethylpyrazine (TMP) presents the effect of anti-platelet aggregation, reduces arteria resistance, increases cerebral blood flow, and improves microcirculation. OBJECTIVE: To observe the effects o... BACKGROUND: Tetramethylpyrazine (TMP) presents the effect of anti-platelet aggregation, reduces arteria resistance, increases cerebral blood flow, and improves microcirculation. OBJECTIVE: To observe the effects of TMP on the learning and memory abilities and the number of neurons in cortex and hippocampus after focal cerebral ischemia in rats DESIGN: A randomized controlled tria SETTING: Department of Human Anatomy and Histological Embryology, School of Medicine, Xi'an Jiaotong University. MATERIALS: Fifty adult male Sprague-Dawley rats, weighing 250-300 g were supplied by the Experimental Animal Center, School of Medicine, Xi'an Jiaotong University. TMP was purchased from Wuxi Seventh Pharmaceutical Co.Ltd (Lot Number: 2004051106, Specification: 2 mL/piece). METHODS : The experiments were carried out in School of Medicine of Xi'an Jiaotong University from June 2004 to May 2005. The 50 rats were randomly divided into five groups according to the random number table method: sham-operated group, cerebral ischemia control group, low-dose TMP group, middle-dose TMP group and high-dose TMP group, 10 rats in each group. Rats in the TMP groups were immediately treated with intraperitoneal injection of TMP of 40, 80 and 120 mg/kg respectively, and those in the sham-operated group and cerebral ischemia control group were injected intraperitoneally by isovolume saline, once a day for 14 days successively. On the 15^th day, the spatial learning and memory abilities of the rats were assessed with the Morris water maze test, and then the changes of neuron numbers in cortex and hippocampus were observed by Nissl staining of brain sections. MAIN OUTCOME MEASURES : The results of Morris water maze test and the changes of neuron numbers in cortex and hippocampus by Nissl staining of brain sections were observed. RESULTS: Finally 39 rats were involved in the analysis of results, and the other 11 died of excessive anesthesia or failure in model establishment. ① The rats in the cerebral ischemia control group manifested obvious spatial cognitive deficits in the place navigation trial and spatial probe trial. The mean values of escape latency in the sham-operated group, low, middle and high-dose TMP groups were obviously shorter than that in the cerebral ischemia control group [(23.92±2.21), (41.84±3.74), (39.50 ±3.80), (31.38_±3.72), (61.60±3.61) s, P 〈 0.05-0.01]. In the spatial probe trial, significant differences in the percentage of time spending in the former platform quadrant and frequency of crossing the former platform site in the sham-operated group, lose, middle and high-dose TMP groups were obviously higher or more than those in the cerebral ischemia control group [(36.27±3.42) %, (35.84±2.54)%, (38.43±3.08)%, (36.51±1.96)%, (22.24±3.46)%; (11 ±1 ), (10±1), (8_±1), (8±1), (4±1) times, P 〈 0.01]. ② In the morphological observation, the numbers of neurons in ipsilateral (left) parietal cortex in the sham-operated group, low, middle and high-dose TMP groups were obviously more than that in the cerebral ischemia control group [(98±8), (65±5), (53±6), (57±6), (37±6)/0.625 mm^2, P 〈 0.01], but the number of neurons in left hippocampus had no obvious differences among the groups (P 〉 0.05). CONCLUSION : TMP can improve obviously the spatial learning and memory function after permanent focal cerebral ischemia in rats, and the neuroprotective role of the drug in cortex may be involved in its mechanism. 展开更多
关键词 Effect of tetramethylpyrazine on the spatial learning and memory function of rats after focal cerebral ischemia TM high SHOW
下载PDF
Improvement of learning and memory abilities and motor function in rats with cerebral infarction by intracerebral transplantation of neuron-like cells derived from bone marrow stromal cells 被引量:4
7
作者 Ying Wang Yubin Deng +2 位作者 Ye Wang Yan Li Zhenzhen Hu 《Neural Regeneration Research》 SCIE CAS CSCD 2006年第1期1-5,共5页
BACKGROUND: Transplantation of fetal cell suspension or blocks of fetal tissue can ameliorate the nerve function after the injury or disease in the central nervous system, and it has been used to treat neurodegenerat... BACKGROUND: Transplantation of fetal cell suspension or blocks of fetal tissue can ameliorate the nerve function after the injury or disease in the central nervous system, and it has been used to treat neurodegenerative disorders induced by Parkinson disease. OBJECTIVE: To observe the effects of the transplantation of neuron-like cells derived from bone marrow stromal cells (rMSCs) into the brain in restoring the dysfunctions of muscle strength and balance as well as learning and memory in rat models of cerebral infarction. DESIGN : A randomized controlled experiment.SETTING : Department of Pathophysiology, Zhongshan Medical College of Sun Yat-sen University.MATERIALS : Twenty-four male SD rats (3-4 weeks of age, weighing 200-220 g) were used in this study (Certification number:2001A027). METHODS: The experiments were carried out in Zhongshan Medical College of Sun Yat-sen University between December 2003 and December 2004. ① Twenty-four male SD rats randomized into three groups with 8 rats in each: experimental group, control group and sham-operated group. Rats in the experiment al group and control group were induced into models of middle cerebral artery occlusion (MCAO). After in vitro cultured, purified and identified with digestion, the Fischer344 rMSCs were induced to differentiate by tanshinone IIA, which was locally injected into the striate cortex (18 area) of rats in the experimental group, and the rats in the control group were injected by L-DMEM basic culture media (without serum) of the same volume to the corresponding brain area. In the sham-operated group, only muscle and vessel of neck were separated. ② At 2 and 8 weeks after the transplantation, the rats were given the screen test, prehensile-traction test, balance beam test and Morris water-maze test. ③ The survival and distribution of the induced cells in corresponding brain area were observed with Nissl stained with toluidine blue and hematoxylin and eosin (HE) staining in the groups.MAIN OUTCOME MEASURES : ① Results of the behavioral tests (time of the Morris water-maze test screen test, prehensile-traction test, balance beam test); ② Survival and distribution of the induced cells.RESULTS: All the 24 rats were involved in the analysis of results. ① Two weeks after transplantation, rats with neuron-like cells grafts in the experimental group had significant improvement on their general muscle strength than those in the control group [screen test: (9.4±1.7), (4.7±1.0) s, P 〈 0.01]; forelimb muscle strength [prehensile-traction test: (7.6±1.4), (5.2±1.2) s, P 〈 0.01], ability to keep balance [balance beam test: (7.9±0.74), (6.1±0.91) s, P 〈 0.01] and abilities of learning and memory [latency to find the platform: (35.8±5.9), (117.5±11.6) s, P 〈 0.01; distance: (623.1±43.4), (1 902.3±98.6) cm, P 〈 0.01] as compared with those in the control group. The functional performances in the experimental group at 8 weeks were better than those at two weeks, which were still obviously different from those in the sham-operated group (P 〈 0.05). ② The HE and Nissl stained brain tissue section showed that there was nerve cell proliferation at the infarcted cortex in the experiment group, the density was higher than that in the control group, plenty of aggregative or scattered cells could be observed at the site where needle was inserted for transplantation, the cells migrated directively towards the area around them, the cerebral vascular walls were wrapped by plenty of cells; In the control group, most of the cortices were destroyed, karyopyknosis and necrosis of neurons were observed, normal nervous tissue structure disappeared induced by edema, only some nerve fibers and glial cells remained.CONCLUSION: The rMSCs transplantation can obviously enhance the motor function and the abilities of learning and memory in rat models of cerebral infarction. 展开更多
关键词 Improvement of learning and memory abilities and motor function in rats with cerebral infarction by intracerebral transplantation of neuron-like cells derived from bone marrow stromal cells bone
下载PDF
Changes of learning and memory ability associated with neuronal nitric oxide synthase in brain tissues of rats with acute alcoholism 被引量:1
8
作者 Shuang Li Chunyang Xu +3 位作者 Dongliang Li Xinjuan Li Linyu Wei Yuan Cheng 《Neural Regeneration Research》 SCIE CAS CSCD 2006年第3期197-200,共4页
BACKGROUD: Ethanol can influence neural development and the ability of leaming and memory, but its mechanism of the neural toxicity is not clear till now. Endogenous nitric oxide (NO) as a gaseous messenger is prov... BACKGROUD: Ethanol can influence neural development and the ability of leaming and memory, but its mechanism of the neural toxicity is not clear till now. Endogenous nitric oxide (NO) as a gaseous messenger is proved to play an important role in the formation of synaptic plasticity, transference of neuronal information and the neural development, but excessive nitro oxide can result in neurotoxicity. OBJECTIVE : To observe the effects of acute alcoholism on the learning and memory ability and the content of neuronal nitric oxide synthase (nNOS) in brain tissue of rats. DESIGN : A randomized controlled animal experiment. SETTING : Department of Physiology, Xinxiang Medical College MATERIALS: Eighteen male clean-degree SD rats of 18-22 weeks were raised adaptively for 2 days, and then randomly divided into control group (n = 8) and experimental group (n = 10). The nNOS immunohistochemical reagent was provided by Beijing Zhongshan Golden Bridge Biotechnology Co.,Ltd. Y-maze was produced by Suixi Zhenghua Apparatus Plant. METHODS : The experiment was carded out in the laboratory of the Department of Physiology, Xinxiang Medical College from June to October in 2005. ① Rats in the experimental group were intraperitoneally injected with ethanol (2.5 g/kg) which was dissolved in normal saline (20%). The loss of righting reflex and ataxia within 5 minutes indicated the successful model. Whereas rats in the control group were given saline of the same volume. ② Examinations of learning and memory ability: The Y-maze tests for learning and memory ability were performed at 6 hours after the models establishment. The rats were put into the Y-maze separately. The test was performed in a quiet and dark room. There was a lamp at the end of each of three pathways in Y-maze and the base of maze had electric net. All the lamps of the three pathways were turned on for 3 minutes and then turned off. One lamp was turned on randomly, and the other two delayed automatically. In 5 seconds after alternation, pulsating electric current presented in the base of unsafe area to stimulate rat's feet to run to the safe area. The lighting lasted for 15 seconds as one test. Running from unsafe area to safe area at one time in 10 seconds was justified as successful. Such test was repeated for 10 times for each rat and the successful frequency was recorded. The qualified standard of maze test was that the rat ardved in the safe area g times during 10 experiments. The number of trainings for the qualified standard was used to represent the result of spatial learning. ③ Determination of the content of nNOS in brain tissue: After the Y-maze test, the rats were anaesthetized, and blood was let from the incision on right auricle, transcardially perfused via the left ventricle with about 200 mL saline, then fixed by perfusion of 40 g/L paraformaldehyde. Hippocampal CA1 region, corpus striatum and cerebellum were taken to prepare serial freezing coronal sections. The nNOS contents in the brain regions were determined with the immunohistochemical methods to reflect the changes of nitdc oxide in brain tissue. MAIN OUTCOME MEASURES : The changes of learning and memory ability and the changes of the nNOS contents in the brain tissue of rats with acute alcoholism were observed. RESULTS : One rat in the experimental group was excluded due to its slow reaction to electdc stimulation in the Y-maze test, and the other 17 rats were involved in the analysis of results. ① The training times to reach qualifying standards of Y-maze in the expedmental group was more than that in the control group [(34.33 ±13.04), (27.50±8.79) times, P〈 0.05]. ② Forms and numbers of nNOS positive neurons in brain tissue: It could be observed under light microscope that in the hippocampal CA1 region, there were fewer nNOS positive neurons, which were lightly stained, and the processes were not clear enough; But the numbers of the positive neurons which were deeply stained as huffy were obviously increased in the experimental group, the cell body and cyloplasm of process were evenly stained, but the nucleus was not stained. The nNOS positive neurons in corpus stdatum had similar forms and size in the experimental group and control group. The form of the nNOS positive neurons in cerebellum were similar between the two groups. The numbers of nNOS positive neurons in hippocampal CA1 region and corpus striatum in the expedmental group [(18.22±7.47), (11.38±5.00) cells/high power field] were obviously higher than those in the control group [(10.15±4.24), (6.15±3.69) cells/high power field. The number of nNOS positive neurons in cerebellum had no significant difference between the two groups [(49.56±18.84), (44.43±15.42) cells/high power field, P〉 0.05]. CONCLUSION : Acute alcoholism may impair learning and memory ability, and nitric oxide may be involved in mediating the neurotoxic role of ethanol. 展开更多
关键词 Changes of learning and memory ability associated with neuronal nitric oxide synthase in brain tissues of rats with acute alcoholism NNOS
下载PDF
Effects of ginsenoside of stem and leaf combined with choline on learning and memory ability of rat models with Alzheimer diseases 被引量:1
9
作者 Xiaomin Zhao Xianglin Xie +3 位作者 Zuoli Xia Yunsheng Gao Yuyun Zhu Hongxia Gu 《Neural Regeneration Research》 SCIE CAS CSCD 2006年第4期331-334,共4页
BACKGROUND: Central adrenergic nerve and 5-serotonergic nerve can influence central cholinergic nerve on learning and memory and make easy for study; however, ginsenoside of stem and leaf (GSL) can improve function... BACKGROUND: Central adrenergic nerve and 5-serotonergic nerve can influence central cholinergic nerve on learning and memory and make easy for study; however, ginsenoside of stem and leaf (GSL) can improve functions of central adrenergic nerve; moreover, 5-serotonergic nerve and the combination with choline can produce synergistic effect and enhance learning and memory ability so as to improve learning and memory disorder of patients with Alzheimer disease (AD). OBJECTIVE : To observe the effects of GSL combining with choline on learning and memory of AD model rats DESIGN : Randomized grouping design and controlled animal study SETIING : Department of Pharmacology, Taishan Medical College MATERIALS : The experiment was carried out in the Pharmacological Department of Medical College of Jilin University from October 1996 to January 1997. Forty healthy male Wistar rats of clean grade were randomly divided into 5 groups, including sham-injury group, model group, GSL group, choline group and combination group, with 8 rats in each group. Main medications: GSL with the volume more than 92.8% was provided by Department of Chemistry, Norman Bethune Medical College of Jilin University. Panaxatriol, the main component, was detected with thin layer scanning technique and regarded as the index of GSL quality [(55±1)%, CV= 2%, n = 5]. Choline was provided by the Third Shanghai Laboratory Factory. METHODS : 150 nmol quinolinic acid was used to damage bilateral Meynert basal nuclei of adult rats so as to establish AD models. Rats in GSL, choline and combination groups were intragastric administrated with 400 mg/kg GSL, 200 mg/kg choline (20 mL/kg), and both respectively last for 17 days starting from two days before operation. Rats in sham-injury group and model group were perfused with the same volume of distilled water once in each morning for the same days. (1) Passive avoidance step-down test: Five minutes later, rats jumped up safe platform when they were shocked with 36 V alternating current. If rats jumped down from the platform and the feet touched railings, the response was wrong. Numbers of wrong response were recorded within 3 minutes, and then the test was redone after 24 hours. (2) Morris water-maze spatial localization task: Swimming from jumping-off to platform directly was regarded as right response. Additionally, 4 successively right responses were regarded as the standard. Each rat was trained 10 times a day with 120 s per time for 3 successive days. The interval was 30 s. Three days later, numbers of right response were recorded. The training times were increased to 30 for unlearned rats. (3) Measurement of activity of choline acetylase in cerebral cortex: Rats were sacrificed at 17 days after operation to obtain cerebral cortex to measure activity of choline acetylase with radiochemistry technique. (4) Synergistic effect: It was expressed as Q value: Q value = factual incorporative effect/anticipant incorporative effect; Q ≥ 1 was regarded as synergistic effect. Anticipant incorporative effect = (EA+EB-EA·EB), EA and EB were single timing effect, respectively in GSL group and choline group. E(step-down test and Morris water maze test) = (x in model group - factual value in medicine groups)/x in model group; E (activity of choline acetylase) = (factual value in medicine groups -xin model group)/xin model group. MAIN OUTCOME MEASURES : (1) Passive avoidance step-down test and Morris water-maze spatial localization task in the study of learning and memory; (2) activity of choline acetylase. RESULTS : All 40 rats were involved in the final analysis. (1) Passive avoidance response: At learning phase on first day and retesting phase on the next day, numbers of wrong responses within 3 minutes were more in model group than sham operation group, and there was significant difference [(5.88±1.46), (2.25±0.87) times; (2.63±1.06), (0.50±0.53) times; P 〈 0.01]; numbers of wrong responses within 3 minutes were less in combination group than model group, and there was significant difference [learning phase: (1.12±0.83), (5.88±1.46) times; retesting phase: (0.38±0.74), (2.63±1.06)times, P 〈 0.01]; moreover, effect was stronger than that in GSL group and choline group. The Q value was 1.07 and 1.59, respectively and it showed synergistic effect. Spatial localization task: Training times were more in model group than sham operation group, and there was significant difference [(2.9±2.5), (12.6±3.5) times; P 〈 0.01]. Training times were less in combination group than model group, and there was significant difference [(11.8±2.4), (27.9±2.5) times, P 〈 0.01]; moreover, effect was stronger than that in GSL group and choline group. The Q value was 1.07 and it showed synergistic effect. (3) Activity of choline acetylase: Activity was lower in model group than sham operation group, and there was significant difference [(30.56±8.33), (61.11 ±8.33) nkat/g; P 〈 0.01]. Activity was higher in combination group than model group and there was significant difference [(50.00±8.33), (30.56±8.33) nkat/g, P 〈 0.01];moreover, effect was stronger than that in GSL group and choline group. The Q value was 1.5 and it showed synergistic effect. CONCLUSZON: GSL in combination with choline can synergically improve the disorder of learning and memory of AD model rats. Its mechanism may be involved in enhancing the function of central cholinergic system. 展开更多
关键词 stem Effects of ginsenoside of stem and leaf combined with choline on learning and memory ability of rat models with Alzheimer diseases
下载PDF
Effect of calcitonin gene-related peptide and nerve growth factor on spatial learning and memory abilities of rats following focal cerebral ischemia/reperfusion
10
作者 Guangshun Zheng1, Yongjie Yang2, Xiubin Fang3 1Department of Neurosurgery, Second Hospital of Xiamen, Xiamen 361021, Fujian Province, China 2Department of Neurosurgery, Second Hospital Affiliated to China Medical University, Shenyang 110004, Liaoning Province, China 3Department of Neurobiology, Basic Medical College of China Medical University, Shenyang 110001, Liaoning Province, China 《Neural Regeneration Research》 SCIE CAS CSCD 2006年第8期673-676,共4页
BACKGROUND: Calcitonin gene-related peptide (CGRP) and nerve growth actor (NGF) cam improve spatial learning and memory abilities of rats with cerebral ischemia/reperfusion; however, the effect of combination of them ... BACKGROUND: Calcitonin gene-related peptide (CGRP) and nerve growth actor (NGF) cam improve spatial learning and memory abilities of rats with cerebral ischemia/reperfusion; however, the effect of combination of them on relieving learning and memory injury following cerebral ischemia/reperfusion should be further studied. OBJECTIVE: To study the effects of exogenous CGRP and NGF on learning and memory abilities of rats with focal cerebral ischemia/reperfusion. DESIGN: Randomized controlled animal study. SETTING: Department of Neurosurgery, the Second Hospital of Xiamen; Department of Neurosurgery, the Second Affiliated Hospital of China Medical University; Department of Neurobiology, Basic Medical College of China Medical University. MATERIALS: A total of 30 healthy male SD rats, aged 8 weeks, of clean grade, weighing 250-300 g, were provided by Experimental Animal Department of China Medical University. All rats were randomly divided into sham-operation group, ischemia/reperfusion group and treatment group with 10 in each group. The main reagents were detailed as the follows: 100 g/L chloral hydrate, 0.5 mL CGRP (2 mg/L, Sigma Company, USA), and NGF (1× 106 U/L, 0.5 mL, Siweite Company, Dalian). METHODS: The experiment was carried out in the Department of Neurobiology, Basic Medical College of China Medical University from February to July 2005. Rat models of middle cerebral artery occlusion were established by method of occlusion, 2 hours after that rats were anesthetized and the thread was slightly drawn out for 10 mm under direct staring to perform reperfusion. Rats in the ischemia/reperfusion group received intraperitoneal injection of 1 mL saline via the abdomen at two hours later, while rats in the treatment group at 2 hours later received intraperitoneal injection of 2 mg/L CGRP (0.5 mL) and 1×106 U/L NGF (0.5 mL) once a day for 10 successive days. First administration was accomplished within 15 minutes after ischemia/reperfusion. Rats in the sham-operation group were separated of the vessels without occlusion or administration. The neural function was evaluated with Zea Longa 5-grade scale. Animals with the score of one, two and three points received Morris water-maze test to measure searching time on platform (omitting platform-escaping latency). Meanwhile, leaning and memory abilities of animals were reflected through testing times of passing through platform per minute. MAIN OUTCOME MEASURES: Experimental results of omitting platform-escaping latency and spatial probe. RESULTS: Three and two rats in the ischemia/reperfusion group and treatment group respectively were not in accordance with the criteria in the process, and the rest were involved in the final analysis. ① Comparisons of platform-escaping latency during Morris water-maze test in all the three groups: Ten days after modeling, the platform-escaping latency in the ischemia/reperfusion group was obviously longer than that in sham-operation group (P < 0.01), and was significantly shorter than that in the treatment group (P < 0.01). ② Comparisons of times of passing through platform in all the three groups: Times of passing through platform were remarkably less in the ischemia/reperfusion group than those in the sham-operation group [(1.79±0.39), (4.30±0.73) times/minute, P < 0.01], and those were markedly more in the treatment group than the ischemia/reperfusion group [(3.16±1.03), (1.79±0.39) times/minute, P < 0.01]. CONCLUSION: CGRP and NGF are capable of ameliorating the abilities of spatial learning and memory in MCAO rats, which indicates that CGRP and NGF can protect ischemic neurons. 展开更多
关键词 Effect of calcitonin gene-related peptide and nerve growth factor on spatial learning and memory abilities of rats following focal cerebral ischemia/reperfusion CGRP MCAO gene
下载PDF
Embryonic skeleton development and neonatal learning and memory ability of rats anesthetized with pentobarbital sodium: Differences of administration occasion and time
11
作者 Changling Peng Yuhua Zhu Ankang Hu Xiaorong Zhu 《Neural Regeneration Research》 SCIE CAS CSCD 2006年第9期844-846,共3页
BACKGROUND: Generally speaking, anesthesia is often used in gravid body and it has been already proved that many kind of medicine can result in malformation. OBJECTIVE: To explore embryonic skeleton development and ne... BACKGROUND: Generally speaking, anesthesia is often used in gravid body and it has been already proved that many kind of medicine can result in malformation. OBJECTIVE: To explore embryonic skeleton development and neonatal learning and memory of rats anesthetized with pentobarbital sodium in gravid rats. DESIGN: A randomized control trial. SETTING: Laboratory Animal Center of Xuzhou Medical College. MATERIALS: A total of 80 adult female SD rats, of clean grade and weighing 220-240 g, were selected in this study. The main reagents were detailed as follows: pentobarbital sodium (Shanghai Xingzhi Chemical Plant, batch number: 921019); MG-2 maze test apparatus (Zhangjiagang Biomedical Instrument Factory); somatotype microscope (Beijing Taike Instrument Co., Ltd.). METHODS: ① A total of 160 SD rats of half males and females were selected in this study. All rats were copulated. The day that the plug was checked out in the vagina next day was looked as the first day of pregnancy. Gravid rats were divided randomly into four groups, including early anesthesia group, second anesthesia group, late anesthesia group and control group with 20 in each group. Rats in the early anesthesia group were injected with 25 mg/kg soluble pentobarbitone on the 7th day of pregnancy for once; rats in the second anesthesia group were anesthetized with 25 mg/kg soluble pentobarbitone on the 7th and the 14th days of pregnancy for once; rats in the late anesthesia group were anesthetized with 25 mg/kg soluble pentobarbitone on the 14th day of pregnancy for once; rats in the control group did not treat with anything. The time of anesthetizing was controlled in 3 to 4 hours and ether was absorbed while the time was not enough. ② Half of each group was sacrificed on day 20th of pregnancy and the fetus was taken out to be stained with alizarin red S. After stained, the fetal skeleton was examined. The learning and memorizing of one-month rats that were given birth by the rest gravid rats were tested through electric mare method. Determine their study ability according to their correct rate of 90% or above of arrival at the safe area in 20 s. After they finally learned to arrive at the safe area correctly, test them once more in 24 hours and record the correct rate of 15 times. MAIN OUTCOME MEASURES: The rate of malformation in fetus and ability of learning and memory in one-month rats. RESULTS: A total of 80 female rats were anesthetized in this experiment. Totally 490 immature rats were tested with maze testing machine and 196 fetuses were stained with alizarin red S to observe the development of their skeleton. However, one of the 80 female rats was led to death because of overdose. ① Malformation experiment: Learning ability of second anesthesia group was evidently different from the control group while the other two groups were not in the electric mare method. The fetal skeleton malformation rate of three experimental groups was 87.0%, 60.9% and 17.9%, respectively, while it was 5.6% in the control group. ② Electric mare method: Times of rats which arrived at the safe regions were respectively 49.0±31.0, 68.0±35.0, 47.0±31.0 and 44.0±21.0 in early anesthesia group, second anesthesia group, late anesthesia group and control group; and then, there was significant difference between the second anesthesia group and the control group (P < 0.05). Exact rates of memory of rats were respectively (64.36±14.35)%, (62.15±18.33)%, (54.19±12.28)% and (68.24±15.91)% in early anesthesia group, second anesthesia group, late anesthesia group and control group; and then, there were no significant differences as compared with the control group (P > 0.05). CONCLUSION: The influence of anesthesia with pentobarbital sodium is obvious in fetal skeleton development and learning and memory ability. 展开更多
关键词 Embryonic skeleton development and neonatal learning and memory ability of rats anesthetized with pentobarbital sodium Differences of administration occasion and time
下载PDF
Possible mechanisms of lycopene amelioration of learning and memory impairment in rats with vascular dementia 被引量:15
12
作者 Ning-Wei Zhu Xiao-Lan Yin +4 位作者 Ren Lin Xiao-Lan Fan Shi-Jie Chen Yuan-Ming Zhu Xiao-Zhen Zhao 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第2期332-341,共10页
Oxidative stress is involved in the pathogenesis of vascular dementia. Studies have shown that lycopene can significantly inhibit oxidative stress;therefore, we hypothesized that lycopene can reduce the level of oxida... Oxidative stress is involved in the pathogenesis of vascular dementia. Studies have shown that lycopene can significantly inhibit oxidative stress;therefore, we hypothesized that lycopene can reduce the level of oxidative stress in vascular dementia. A vascular dementia model was established by permanent bilateral ligation of common carotid arteries. The dosage groups were treated with lycopene(50, 100 and 200 mg/kg) every other day for 2 months. Rats without bilateral carotid artery ligation were prepared as a sham group. To test the ability of learning and memory, the Morris water maze was used to detect the average escape latency and the change of search strategy. Hematoxylin-eosin staining was used to observe changes of hippocampal neurons. The levels of oxidative stress factors, superoxide dismutase and malondialdehyde, were measured in the hippocampus by biochemical detection. The levels of reactive oxygen species in the hippocampus were observed by dihydroethidium staining. The distribution and expression of oxidative stress related protein, neuron-restrictive silencer factor, in hippocampal neurons were detected by immunofluorescence histochemistry and western blot assays. After 2 months of drug administration,(1) in the model group, the average escape latency was longer than that of the sham group, and the proportion of straight and tend tactics was lower than that of the sham group, and the hippocampal neurons were irregularly arranged and the cytoplasm was hyperchromatic.(2) The levels of reactive oxygen species and malondialdehyde in the hippocampus of the model group rats were increased, and the activity of superoxide dismutase was decreased.(3) Lycopene(50, 100 and 200 mg/kg) intervention improved the above changes, and the lycopene 100 mg/kg group showed the most significant improvement effect.(4) Neuron-restrictive silencer factor expression in the hippocampus was lower in the sham group and the lycopene 100 mg/kg group than in the model group.(5) The above data indicate that lycopene 100 mg/kg could protect against the learning-memory ability impairment of vascular dementia rats. The protective mechanism was achieved by inhibiting oxidative stress in the hippocampus. The experiment was approved by the Animal Ethics Committee of Fujian Medical University, China(approval No. 2014-025) in June 2014. 展开更多
关键词 bilateral carotid artery ligation LYCOPENE hippocampus learning and memory MALONDIALDEHYDE neuron neuron-restrictive SILENCER factor reactive oxygen species superoxide DISMUTASE
下载PDF
Basic roles of key molecules connected with NMDAR signaling pathway on regulating learning and memory and synaptic plasticity 被引量:18
13
作者 Hui Wang Rui-Yun Peng 《Journal of Medical Colleges of PLA(China)》 CAS 2016年第4期212-218,共7页
With key roles in essential brain functions ranging from the long-term potentiation(LTP) to synaptic plasticity,the N-methyl-D-aspartic acid receptor(NMDAR) can be considered as one of the fundamental glutamate recept... With key roles in essential brain functions ranging from the long-term potentiation(LTP) to synaptic plasticity,the N-methyl-D-aspartic acid receptor(NMDAR) can be considered as one of the fundamental glutamate receptors in the central nervous system.The role of NMDA R was first identified in synaptic plasticity and has been extensively studied.Some molecules,such as Ca^(2+),postsynaptic density 95(PSD-95),calcium/calmodulin-dependent protein kinase II(Ca MK II),protein kinase A(PKA),mitogen-activated protein kinase(MAPK) and cyclic adenosine monophosphate(c AMP) responsive element binding protein(CREB),are of special importance in learning and memory.This review mainly focused on the new research of key molecules connected with learning and memory,which played important roles in the NMDAR signaling pathway. 展开更多
关键词 N-methyl-D-aspartic acid receptors Long-term potentiation Synaptic plasticity learning and memory
下载PDF
Microglia regulation of synaptic plasticity and learning and memory 被引量:36
14
作者 Jessica Cornell Shelbi Salinas +1 位作者 Hou-Yuan Huang Miou Zhou 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第4期705-716,共12页
Microglia are the resident macrophages of the central nervous system.Microglia possess varied morphologies and functions.Under normal physiological conditions,microglia mainly exist in a resting state and constantly m... Microglia are the resident macrophages of the central nervous system.Microglia possess varied morphologies and functions.Under normal physiological conditions,microglia mainly exist in a resting state and constantly monitor their microenvironment and survey neuronal and synaptic activity.Through the C1 q,C3 and CR3"Eat Me"and CD47 and SIRPα"Don't Eat Me"complement pathways,as well as other pathways such as CX3 CR1 signaling,resting microglia regulate synaptic pruning,a process crucial for the promotion of synapse formation and the regulation of neuronal activity and synaptic plasticity.By mediating synaptic pruning,resting microglia play an important role in the regulation of experience-dependent plasticity in the barrel cortex and visual cortex after whisker removal or monocular deprivation,and also in the regulation of learning and memory,including the modulation of memory strength,forgetfulness,and memory quality.As a response to brain injury,infection or neuroinflammation,microglia become activated and increase in number.Activated microglia change to an amoeboid shape,migrate to sites of inflammation and secrete proteins such as cytokines,chemokines and reactive oxygen species.These molecules released by microglia can lead to synaptic plasticity and learning and memory deficits associated with aging,Alzheimer's disease,traumatic brain injury,HIV-associated neurocognitive disorder,and other neurological or mental disorders such as autism,depression and post-traumatic stress disorder.With a focus mainly on recently published literature,here we reviewed the studies investigating the role of resting microglia in synaptic plasticity and learning and memory,as well as how activated microglia modulate disease-related plasticity and learning and memory deficits.By summarizing the function of microglia in these processes,we aim to provide an overview of microglia regulation of synaptic plasticity and learning and memory,and to discuss the possibility of microglia manipulation as a therapeutic to ameliorate cognitive deficits associated with aging,Alzheimer's disease,traumatic brain injury,HIV-associated neurocognitive disorder,and mental disorders. 展开更多
关键词 AGING Alzheimer's disease cognitive deficits experience-dependent plasticity learning and memory mental disorders MICROGLIA synaptic plasticity synaptic pruning
下载PDF
Effect of Punica granatum peel extract on learning and memory in rats 被引量:3
15
作者 Shalini Adiga Prabhav Trivedi +2 位作者 Ravichandra V Debashree Deb Forum Mehta 《Asian Pacific Journal of Tropical Medicine》 SCIE CAS 2010年第9期687-690,共4页
Objective:To evaluate potential memory enhancing effect of Punica granatum peel extract on rats.Methods:Healthy adult male albino rats of Wistar strain were used.Each group of 6 rats were administered either distilled... Objective:To evaluate potential memory enhancing effect of Punica granatum peel extract on rats.Methods:Healthy adult male albino rats of Wistar strain were used.Each group of 6 rats were administered either distilled water or 50 mg/kg of extract or 100 mg/kg of extract for 15 days and subjected to passive avoidance test or T-maze test.In the next phase rats were administered distilled water or 100 mg/kg of extract for 15 days and the rats were given injection diazepam before subjecting them to the tests.Results:The overall performance was better in test groups compared to control groups.Among the test groups,100 mg/kg rats performed better than 50 mg/kg.The effect on spatial learning parameters like mean number of alternations and mean percentage bias was more marked compared to retention testing parameters like latency. 100 mg/kg Punica extract treated group also improved performance of diazepam treated rats. Conclusions:There is a definite trend of memory improvement by Punica granatum peel with effects being more marked on spatial learning tendency and long term memory than on retention capacity. 展开更多
关键词 Punica granatum PEEL learning memory OXIDATIVE stress DIAZEPAM AMNESIA
下载PDF
DHA Depletion in Rat Brain Is Associated With Impairment on Spatial Learning and Memory 被引量:4
16
作者 YING XIAO LING WANG +1 位作者 RUO-JUN XU ZHEN-YU CHEN 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2006年第6期474-480,共7页
Objective To examine the effect of docosahexaenoic acid (DHA) deficiency in brain on spatial learning and memory in rats. Methods Sprague Dawley rats were fed with an n-3 fatty acid deficient diet for two generation... Objective To examine the effect of docosahexaenoic acid (DHA) deficiency in brain on spatial learning and memory in rats. Methods Sprague Dawley rats were fed with an n-3 fatty acid deficient diet for two generations to induce DHA depletion in brain, DHA in seven brain regions was analyzed using the gas-liquid chromatography. Morris water maze (MWM) was employed as an assessing index of spatial learning and memory in the n-3 fatty acid deficient adult rats of second generation. Results Feeding an n-3 deficient diet for two generations depleted DHA differently by 39%-63% in the seven brain regions including cerebellum, medulla, hypothalamus, striatum, hippocampus, cortex and midbrain, The MWM test showed that the n-3 deficient rats took a longer time and swam a longer distance to find the escape platform than the n-3 Adq group. Condusion The spatial learning and memory in adult rats are partially impaired by brain DHA depletion. 展开更多
关键词 Docosahexaenoic acid memory Morris water maze Spatial learning
下载PDF
Eleutheroside B or E enhances learning and memory in experimentally aged rats 被引量:8
17
作者 Debin Huang Zehua Hu Zhaofen Yu 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第12期1103-1112,共10页
Eleutheroside B or E, the main component of Acanthopanax, can relieve fatigue, enhance memory, and improve human cognition. Numerous studies have confirmed that high doses of acetylcholine significantly attenuate clin... Eleutheroside B or E, the main component of Acanthopanax, can relieve fatigue, enhance memory, and improve human cognition. Numerous studies have confirmed that high doses of acetylcholine significantly attenuate clinical symptoms and delay the progression of Alzheimer's disease. The present study replicated a rat model of aging induced by injecting quinolinic acid into the hippocampal CA1 region. These rats were intraperitoneally injected with low, medium and high doses of eleutheroside B or E (50, 100, 200 mg/kg), and rats injected with Huperzine A or PBS were used as controls. At 4 weeks after administration, behavioral tests showed that the escape latencies and errors in searching for the platform in a Morris water maze were dose-dependently reduced in rats treated with medium and high-dose eleutheroside B or E. Hematoxylin-eosin staining showed that the number of surviving hippocampal neurons was greater and pathological injury was milder in three eleutheroside B or E groups compared with model group. Hippocampal homogenates showed enhanced cholinesterase activity, and dose-dependent increases in acetylcholine content and decreases in choline content following eleutheroside B or E treatment, similar to those seen in the Huperzine A group. These findings indicate that eleutheroside B or E improves learning and memory in aged rats. These effects of eleutheroside B or E may be mediated by activation of cholinesterase or enhanced reuse of choline to accelerate the synthesis of acetylcholine in hippocampal neurons. 展开更多
关键词 neural regeneration traditional Chinese medicine eleutheroside B or E quinolinic acid aged rats Huperzine A learning and memory HIPPOCAMPUS ACETYLCHOLINE CHOLINESTERASE CHOLINE mechanism grants-supported paper NEUROREGENERATION
下载PDF
Effects of exercise on neurogenesis in the dentate gyrus and ability of learning and memory after hippocampus lesion in adult rats 被引量:11
18
作者 Lin CHEN Shan GONG +6 位作者 Li-Dong SHAN Wei-Ping XU Yue-Jin ZHANG Shi-Yu GUO Tadashi Hisamitsu Qi-Zhang YIN Xing-Hong JIANG 《Neuroscience Bulletin》 SCIE CAS CSCD 2006年第1期1-6,共6页
Objective To explore the effects of exercise on dentate gyrus (DG) neurogenesis and the ability of learning and memory in hippocampus-lesioned adult rats. Methods Hippocampus lesion was produced by intrabippocampal ... Objective To explore the effects of exercise on dentate gyrus (DG) neurogenesis and the ability of learning and memory in hippocampus-lesioned adult rats. Methods Hippocampus lesion was produced by intrabippocampal microinjection of kainic acid (KA). Bromodeoxyuridine (BrdU) was used to label dividing cells. Y maze test was used to evaluate the ability of learning and memory. Exercise was conducted in the form of forced running in a motor-driven running wheel. The speed of wheel revolution was regulated at 3 kinds of intensity: lightly running, moderately running, or heavily running. Results Hippocampus lesion could increase the number of BrdU-labeled DG cells, moderately running after lesion could further enhance the number of BrdU-labeled cells and decrease the error number (EN) in Y maze test, while neither lightly running, nor heavily running had such effects. There was a negative correlation between the number of DG BrdU-labeled cells and the EN in the Y maze test after running. Conclusion Moderate exercise could enhance the DG neurogenesis and ameliorate the ability of learning and memory in hippocampus-lesioned rats. 展开更多
关键词 NEUROGENESIS dentate gyms kainic acid learning and memory EXERCISE running BROMODEOXYURIDINE
下载PDF
Synergistic effects of ginseng stem and leaf-extracted ginsenoside and choline on improving learning and memory in rats Association verification experiment in animals with multiple learning and memory disorders 被引量:3
19
作者 Xiaomin Zhao Hongxia GU +6 位作者 Qing Li Xianglin Xie Zuoli Xia Hongxin Cai Ling Zhang Dawei Li Xinnong Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2008年第2期187-191,共5页
BACKGROUND: Ginsenoside extracted from the stem and leaf of ginseng (GSL) and choline have both been shown to improve learning and memory functions; however, further studies are needed to understand the synergistic... BACKGROUND: Ginsenoside extracted from the stem and leaf of ginseng (GSL) and choline have both been shown to improve learning and memory functions; however, further studies are needed to understand the synergistic effects of a combination of both. OBJECTIVE: To verify the combined improved synergistic effects of GSL and choline on learning and memory disorders in rats. DESIGN: Control observation. SETTING: Taishan Medical College. MATERIALS: A total of 150 male Kunming mice weighing (204-2) g and 40 healthy male Wistar rats weighing (2204-20) g were provided by the Experimental Animal Department of Jilin University. Animal experimentation received confirmed consent from the local ethic committee. GSL was provided by the Department of Chemistry, Norman Bethune Medical University, and choline was provided by the Third Experiment Factory, Shanghai. METHODS: This study was performed at the Life Science Institute, Taishan Medical College from October 2006 to February 2007. ① Scopolamine-induced learning and memory disorders in rats: Forty rats were randomly divided into control group, model group, combination group (400 mg/kg GSL + 200 mg/kg choline), GSL (400 mg/kg) group, and choline (200 mg/kg) group, 8 rats/group. Rats were perfused and administrated in the morning, once a day for 14 successive days. Rats in the control group and model group were perfused with 20 mL/kg distilled water and underwent Morris water maze spatial resolution test 1 hour after perfusion on the 10m, 11m, and 12m days after administration. Rats also underwent passive step-down avoidance test 1 hour after reperfusion on the 13m and 14m days after administration. Thirty minutes prior to experimentation, rats in the remaining three groups were intraperitoneally (i.p) injected with 2 mg/kg scopolamine, and rats in the control group were i.p. injected with 2 mL/kg saline. ② Scopolamine-induced learning disorder and memory acquired disorder in mice: Fifty mice were randomly divided into control group, model group, combination group (400 mg/kg GSL +200 mg/kg choline), GSL (400 mg/kg) group, and choline (200 mg/kg) group, with 10 mice/group. Mice were perfused and administrated in the morning, once a day for 9 successive days. Mice in the control group and model group were perfused with 20 mL/kg distilled water and underwent passive step down avoidance test 1 hour after reperfusion on the 8th and 9th day after administration. Twenty minutes prior to training, mice in the remaining three groups were i.p. injected with 2 mg/kg scopolamine, and mice in the control group were i.p. injected with 10 mL/kg saline. ③ Sodium nitrite-induced memory consolidation disorder in mice: Grouping, administration, and testing were the same as mentioned above. After training, mice in the remaining three groups were immediately subcutaneously injected with 120 mg/kg sodium nitrite, and mice in the control group were subcutaneously injected with 20 mL/kg saline. ④ Ethanol-induced memory reconsolidation disorder in mice: Grouping, administration, and testing were the same as mentioned above. At 24 hours after training and 20 minutes before retraining, mice in the remaining four groups were perfused with 10 mL/kg ethanol (0.3 volume fraction), and mice in the control group were perfused with 10 mL/kg saline. MAIN OUTCOME MEASURES: Synergistic effects of GSL and choline on learning and memory deficits induced by scopolamine, sodium nitrite, and ethanol in experimental animals. RESULTS: All 40 rats and 150 mice were included in the final analysis. ① Synergistic effects of GSL and choline on learning and memory disorders induced by scopolamine in rats: During passive step-down avoidance and Morris water maze spatial resolution tests, the number of error responses and length of maze training in the model group were significantly greater than in the control group (P 〈 0.01); while the number of error responses and length of maze training in the combination group were significantly less than in the model group, GSL group, and choline group (P 〈 0.05-0.01). The Q value was 〉 1 after combining administration, which suggests that the combination of GSL and choline had synergistic effects. ② Synergistic effects of GSL and choline on learning disorder and memory-acquired disorder induced by scopolamine in mice: During passive step-down avoidance test, the number of error responses in the model group were significantly greater than in the control group (P 〈 0.01 ); while the number of error responses in the combination group were significantly less than in the model group, GSL group, and choline group (P 〈 0.05-0.01). The Q value was 〉 1 after combining administration, which suggests GSL and choline had synergistic effects. ③ Synergistic effects of GSL and choline on memory sodium nitrate-induced consolidation disorder in mice: During passive step down avoidance test, the number of error responses in the model group were significantly less than in the control group (P 〈 0.01 ); while the number of error responses in the combination group were significantly less than in the model group, GSL group, and choline group (P 〈 0.05-0.01). The Q value was 〉 1 after combined administration, which suggests GSL and choline had synergistic effects. ④ Synergistic effects of GSL and choline on ethanol-induced memory reconsolidation disorder in mice: During passive step down avoidance test, the number of error responses in the model group were significantly greater than in the control group (P 〈 0.01); while the number of error responses in the combination group were significantly less than in the model group, GSL group, and choline group (P 〈 0.05-0.01). The Q value was 〉 1 after combined administration, which suggests GSL and choline had synergistic effects. CONCLUSION: GSL and choline have synergistic effects on learning and memory functions. 展开更多
关键词 ginsenoside of stem and leaf CHOLINE learning memory
下载PDF
Role of the hippocampus on learning and memory functioning and pain modulation 被引量:2
20
作者 Haimei Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2008年第5期569-572,共4页
The hippocampus, an important part of the limbic system, is considered to be an important region of the brain for learning and memory functioning. Recent studies have demonstrated that synaptic plasticity is thought t... The hippocampus, an important part of the limbic system, is considered to be an important region of the brain for learning and memory functioning. Recent studies have demonstrated that synaptic plasticity is thought to be the basis of learning and memory functioning. A series of studies report that similar synaptic plasticity also exists in the spinal cord in the conduction pathway of pain sensation, which may contribute to hyperalgesia, abnormal pain, and analgesia. The synaptic plasticity of learning and memory functioning and that of the pain conduction pathway have similar mechanisms, which are related to the N-methyl-D-aspartic acid receptor. The hippocampus also has a role in pain modulation. As pain signals can reach the hippocampus, the precise correlation between synaptic plasticity of the pain pathway and that of learning and memory functioning deserves further investigation. The role of the hippocampus in processing pain information requires to be identified. 展开更多
关键词 HIPPOCAMPUS learning memory neuronal plasticity PAIN
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部