期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
An Effective Routing Algorithm with Chaotic Neurodynamics for Optimizing Communication Networks
1
作者 Takayuki Kimura Takefumi Hiraguri Tohru Ikeguchi 《American Journal of Operations Research》 2012年第3期348-356,共9页
In communication networks, the most significant impediment to reliable communication between end users is the congestion of packets. Many approaches have been tried to resolve the congestion problem. In this regard, w... In communication networks, the most significant impediment to reliable communication between end users is the congestion of packets. Many approaches have been tried to resolve the congestion problem. In this regard, we have proposed a routing algorithm with chaotic neurodynamics. By using a refractory effect, which is the most important effect of chaotic neurons, the routing algorithm shows better performance than the shortest path approach. In addition, we have further improved the routing algorithm by combining information of the shortest paths and the waiting times at adjacent nodes. We confirm that the routing algorithm using chaotic neurodynamics is the most effective approach to alleviate congestion of packets in a communication network. In previous works, the chaotic routing algorithm has been evaluated for ideal communication networks in which every node has the same transmission capability for routing the packets and the same buffer size for storing the packets. To check whether the chaotic routing algorithm is practically applicable, it is important to evaluate its performance under realistic conditions. In 2007, M. Hu et al. proposed a practicable communication network in which the largest storage capacity and processing capability were introduced. New-man et al. proposed scale-free networks with community structures;these networks effectively extract communities from the real complex network using the shortest path betweenness. In addition, the scale-free networks have common structures in real complex networks such as collaboration networks or communication networks. Thus, in this paper, we evaluate the chaotic routing algorithm for communication networks to which realistic conditions are introduced. Owing to the effective alleviation of packets, the proposed routing algorithm shows a higher arrival rate of packets than the conventional routing algorithms. Further, we confirmed that the chaotic routing algorithm can possibly be applied to real communication networks. 展开更多
关键词 CHAOTIC neurodynamics CONGESTION Control PACKET ROUTING Problems Complex Networks
下载PDF
Accelerated Primal-Dual Projection Neurodynamic Approach With Time Scaling for Linear and Set Constrained Convex Optimization Problems
2
作者 You Zhao Xing He +1 位作者 Mingliang Zhou Tingwen Huang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1485-1498,共14页
The Nesterov accelerated dynamical approach serves as an essential tool for addressing convex optimization problems with accelerated convergence rates.Most previous studies in this field have primarily concentrated on... The Nesterov accelerated dynamical approach serves as an essential tool for addressing convex optimization problems with accelerated convergence rates.Most previous studies in this field have primarily concentrated on unconstrained smooth con-vex optimization problems.In this paper,on the basis of primal-dual dynamical approach,Nesterov accelerated dynamical approach,projection operator and directional gradient,we present two accelerated primal-dual projection neurodynamic approaches with time scaling to address convex optimization problems with smooth and nonsmooth objective functions subject to linear and set constraints,which consist of a second-order ODE(ordinary differential equation)or differential conclusion system for the primal variables and a first-order ODE for the dual vari-ables.By satisfying specific conditions for time scaling,we demonstrate that the proposed approaches have a faster conver-gence rate.This only requires assuming convexity of the objective function.We validate the effectiveness of our proposed two accel-erated primal-dual projection neurodynamic approaches through numerical experiments. 展开更多
关键词 Accelerated projection neurodynamic approach lin-ear and set constraints projection operators smooth and nonsmooth convex optimization time scaling.
下载PDF
Receding-Horizon Trajectory Planning for Under-Actuated Autonomous Vehicles Based on Collaborative Neurodynamic Optimization
3
作者 Jiasen Wang Jun Wang Qing-Long Han 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第11期1909-1923,共15页
This paper addresses a major issue in planning the trajectories of under-actuated autonomous vehicles based on neurodynamic optimization.A receding-horizon vehicle trajectory planning task is formulated as a sequentia... This paper addresses a major issue in planning the trajectories of under-actuated autonomous vehicles based on neurodynamic optimization.A receding-horizon vehicle trajectory planning task is formulated as a sequential global optimization problem with weighted quadratic navigation functions and obstacle avoidance constraints based on given vehicle goal configurations.The feasibility of the formulated optimization problem is guaranteed under derived conditions.The optimization problem is sequentially solved via collaborative neurodynamic optimization in a neurodynamics-driven trajectory planning method/procedure.Simulation results with under-actuated unmanned wheeled vehicles and autonomous surface vehicles are elaborated to substantiate the efficacy of the neurodynamics-driven trajectory planning method. 展开更多
关键词 Collaborative neurodynamic optimization receding-horizon planning trajectory planning under-actuated vehicles
下载PDF
Distributed accelerated primal-dual neurodynamic approaches for resource allocation problem
4
作者 ZHAO You HE Xing +1 位作者 YU JunZhi HUANG TingWen 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2023年第12期3639-3650,共12页
This paper investigates two distributed accelerated primal-dual neurodynamic approaches over undirected connected graphs for resource allocation problems(RAP)where the objective functions are generally convex.With the... This paper investigates two distributed accelerated primal-dual neurodynamic approaches over undirected connected graphs for resource allocation problems(RAP)where the objective functions are generally convex.With the help of projection operators,a primal-dual framework,and Nesterov's accelerated method,we first design a distributed accelerated primal-dual projection neurodynamic approach(DAPDP),and its convergence rate of the primal-dual gap is O(1/(t^(2)))by selecting appropriate parameters and initial values.Then,when the local closed convex sets are convex inequalities which have no closed-form solutions of their projection operators,we further propose a distributed accelerated penalty primal-dual neurodynamic approach(DAPPD)on the strength of the penalty method,primal-dual framework,and Nesterov's accelerated method.Based on the above analysis,we prove that DAPPD also has a convergence rate O(1/(t^(2)))of the primal-dual gap.Compared with the distributed dynamical approaches based on the classical primal-dual framework,our proposed distributed accelerated neurodynamic approaches have faster convergence rates.Numerical simulations demonstrate that our proposed neurodynamic approaches are feasible and effective. 展开更多
关键词 accelerated primal-dual neurodynamic approaches RAP projection operators penalty method convergence rate O(1/(t^(2)))
原文传递
Kinematics-based four-state trajectory tracking control of a spherical mobile robot driven by a 2-DOF pendulum 被引量:4
5
作者 Wei LI Qiang ZHAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第6期1530-1540,共11页
Spherical mobile robot has compact structure, remarkable stability, and flexible motion,which make it have many advantages over traditional mobile robots when applied in those unmanned environments, such as outer plan... Spherical mobile robot has compact structure, remarkable stability, and flexible motion,which make it have many advantages over traditional mobile robots when applied in those unmanned environments, such as outer planets. However, spherical mobile robot is a special highly under-actuated nonholonomic system, which cannot be transformed to the classic chained form. At present, there has not been a kinematics-based trajectory tracking controller which could track both the position states and the attitude states of a spherical mobile robot. In this paper, the four-state(two position states and two attitude states) trajectory tracking control of a type of spherical mobile robot driven by a 2-DOF pendulum was studied. A controller based on the shunting model of neurodynamics and the kinematic model was deduced, and its stability was demonstrated with Lyapunov’s direct method. The control priorities of the four states were allocated according to the magnification of each state tracking error in order to firstly ensure the correct tracking of the position states. The outputs(motor speeds) of the controller were regulated according to the maximum speeds and the maximum accelerations of the actuation motors in order to solve the speed jump problem caused by initial state errors, and continuous and bounded outputs were obtained. The effectiveness including the anti-interference ability of the proposed trajectory tracking controller was verified through MATLAB simulations. 展开更多
关键词 KINEMATICS Lyapunov methods neurodynamics NONHOLONOMIC systems Spherical mobile robot Trajectory tracking
原文传递
Model predictive control of servo motor driven constant pump hydraulic system in injection molding process based on neurodynamic optimization 被引量:7
6
作者 Yong-gang PENG Jun WANG Wei WEI 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2014年第2期139-146,共8页
In view of the high energy consumption and low response speed of the traditional hydraulic system for an injection molding machine,a servo motor driven constant pump hydraulic system is designed for a precision inject... In view of the high energy consumption and low response speed of the traditional hydraulic system for an injection molding machine,a servo motor driven constant pump hydraulic system is designed for a precision injection molding process,which uses a servo motor,a constant pump,and a pressure sensor,instead of a common motor,a constant pump,a pressure proportion valve,and a flow proportion valve.A model predictive control strategy based on neurodynamic optimization is proposed to control this new hydraulic system in the injection molding process.Simulation results showed that this control method has good control precision and quick response. 展开更多
关键词 Model predictive control Recurrent neural network Neurodynamic optimization Injection molding machine
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部