Many clinical studies have addressed the treatment of acute cerebral hemorrhage using acupuncture. However, few studies have examined the relationship between time of acupuncture and curative effect on cerebral hemorr...Many clinical studies have addressed the treatment of acute cerebral hemorrhage using acupuncture. However, few studies have examined the relationship between time of acupuncture and curative effect on cerebral hemorrhage. By observing the effect of acupuncture on changes in histopathology, ultrastructure, and neuroethology in a cerebral hemorrhage model of rats, we have directly examined the time-effect relationship of acupuncture. The rat model of cerebral hemorrhage was produced by slowly injecting autologous blood to the right caudate nucleus. The experimental groups were: 3-, 9-, 24-, and 48-hour model groups; and 3-, 9-, 24-, and 48-hour acupuncture groups. The sham-operation group was used for comparison. Acupuncture was performed at the Neiguan(PC6) and Renzhong(DU26) acupoints, twice a day, 6 hours apart, for 5 consecutive days. Brain tissue changes were observed by light microscopy and transmission electron microscopy. Neuroethology was assessed using Bederson and Longa scores. Our results show that compared with the sham-operation and model groups, Bederson and Longa scores were lower in each acupuncture group, with visibly improved histopathology and brain tissue ultrastructure. Further, the results were better in the 3-and 9-hour acupuncture groups than the 24-and 48-hour acupuncture groups. Our findings show that acupuncture treatment can relieve pathological and ultrastructural deterioration and neurological impairment caused by the acute phase of cerebral hemorrhage, and may protect brain tissue during this period. In addition, earlier acupuncture intervention following cerebral hemorrhage(by 3 or 9 hours) is associated with a better treatment outcome.展开更多
Chairs Susan E. Fahrbach & Jochen ZeilVice Chairs Heather L. Eisthen & Hans A. HofmannDescription This Gordon Conference focuses on the evolution of neural circuits
Previous studies addressing the protection of tea polyphenols against cerebral ischemia/ reperfusion injury often use focal cerebral ischemia models, and the optimal dose is not unified. In this experiment, a cerebral...Previous studies addressing the protection of tea polyphenols against cerebral ischemia/ reperfusion injury often use focal cerebral ischemia models, and the optimal dose is not unified. In this experiment, a cerebral ischemia/reperfusion injury rat model was established using a modified four-vessel occlusion method. Rats were treated with different doses of tea polyphenols (25, 50, 100, 150, 200 mg/kg) via intraperitoneal injection. Results showed that after 2, 6, 12, 24, 48 and 72 hours of reperfusion, peroxide dismutase activity and total antioxidant capacity in brain tissue gradually increased, while malondialdehyde content gradually decreased after tea polyphenol intervention. Tea polyphenols at 200 mg/kg resulted in the most apparent changes. Terminal deoxynucleotidyl transferase-mediated nick end labeling and flow cytometry showed that 200 mg/kg tea polyphenols significantly reduced the number and percentage of apoptotJc cells in the hippocampal CA1 region of rats after cerebral ischemia/reperfusion injury. The open field test and elevated plus maze experiments showed that tea polyphenols at 200 mg/kg strengthened exploratory behavior and reduced anxiety of cerebral ischemia/reperfusion injured rats. Experimental findings indicate that tea polyphenols protected rats against cerebral ischemia/ reperfusion injury and 200 mg/kg is regarded as the optimal dose.展开更多
Understanding the connection between brain and behavior in animals requires precise monitoring of their behaviors in three-dimensional(3-D)space.However,there is no available three-dimensional behavior capture system ...Understanding the connection between brain and behavior in animals requires precise monitoring of their behaviors in three-dimensional(3-D)space.However,there is no available three-dimensional behavior capture system that focuses on rodents.Here,we present MouseVenue3D,an automated and low-cost system for the efficient capture of 3-D skeleton trajectories in markerless rodents.We improved the most time-consuming step in 3-D behavior capturing by developing an automatic calibration module.Then,we validated this process in behavior recognition tasks,and showed that 3-D behavioral data achieved higher accuracy than 2-D data.Subsequently,MouseVenue3D was combined with fast high-resolution miniature two-photon microscopy for synchronous neural recording and behavioral tracking in the freely-moving mouse.Finally,we successfully decoded spontaneous neuronal activity from the 3-D behavior of mice.Our findings reveal that subtle,spontaneous behavior modules are strongly correlated with spontaneous neuronal activity patterns.展开更多
基金supported by a grant from the Tianjin Science and Technology Commission,China,No.05YFSZSF02600(to PL)
文摘Many clinical studies have addressed the treatment of acute cerebral hemorrhage using acupuncture. However, few studies have examined the relationship between time of acupuncture and curative effect on cerebral hemorrhage. By observing the effect of acupuncture on changes in histopathology, ultrastructure, and neuroethology in a cerebral hemorrhage model of rats, we have directly examined the time-effect relationship of acupuncture. The rat model of cerebral hemorrhage was produced by slowly injecting autologous blood to the right caudate nucleus. The experimental groups were: 3-, 9-, 24-, and 48-hour model groups; and 3-, 9-, 24-, and 48-hour acupuncture groups. The sham-operation group was used for comparison. Acupuncture was performed at the Neiguan(PC6) and Renzhong(DU26) acupoints, twice a day, 6 hours apart, for 5 consecutive days. Brain tissue changes were observed by light microscopy and transmission electron microscopy. Neuroethology was assessed using Bederson and Longa scores. Our results show that compared with the sham-operation and model groups, Bederson and Longa scores were lower in each acupuncture group, with visibly improved histopathology and brain tissue ultrastructure. Further, the results were better in the 3-and 9-hour acupuncture groups than the 24-and 48-hour acupuncture groups. Our findings show that acupuncture treatment can relieve pathological and ultrastructural deterioration and neurological impairment caused by the acute phase of cerebral hemorrhage, and may protect brain tissue during this period. In addition, earlier acupuncture intervention following cerebral hemorrhage(by 3 or 9 hours) is associated with a better treatment outcome.
文摘Chairs Susan E. Fahrbach & Jochen ZeilVice Chairs Heather L. Eisthen & Hans A. HofmannDescription This Gordon Conference focuses on the evolution of neural circuits
基金supported by the National Natural Science Foundation of China,No.81071070
文摘Previous studies addressing the protection of tea polyphenols against cerebral ischemia/ reperfusion injury often use focal cerebral ischemia models, and the optimal dose is not unified. In this experiment, a cerebral ischemia/reperfusion injury rat model was established using a modified four-vessel occlusion method. Rats were treated with different doses of tea polyphenols (25, 50, 100, 150, 200 mg/kg) via intraperitoneal injection. Results showed that after 2, 6, 12, 24, 48 and 72 hours of reperfusion, peroxide dismutase activity and total antioxidant capacity in brain tissue gradually increased, while malondialdehyde content gradually decreased after tea polyphenol intervention. Tea polyphenols at 200 mg/kg resulted in the most apparent changes. Terminal deoxynucleotidyl transferase-mediated nick end labeling and flow cytometry showed that 200 mg/kg tea polyphenols significantly reduced the number and percentage of apoptotJc cells in the hippocampal CA1 region of rats after cerebral ischemia/reperfusion injury. The open field test and elevated plus maze experiments showed that tea polyphenols at 200 mg/kg strengthened exploratory behavior and reduced anxiety of cerebral ischemia/reperfusion injured rats. Experimental findings indicate that tea polyphenols protected rats against cerebral ischemia/ reperfusion injury and 200 mg/kg is regarded as the optimal dose.
基金the Key Area R&D Program of Guangdong Province,China(2018B030338001 and 2018B030331001)the National Key R&D Program of China(2018YFA0701403)+11 种基金the National Natural Science Foundation of China(31500861,31630031,91732304,and 31930047)Chang Jiang Scholars Program,the International Big Science Program Cultivating Project of the Chinese Academy of Science(CAS172644KYS820170004)the Strategic Priority Research Program of the CAS(XDB32030100)the Youth Innovation Promotion Association of the CAS(2017413)the CAS Key Laboratory of Brain Connectome and Manipulation(2019DP173024)Shenzhen Government Basic Research Grants(JCYJ20170411140807570,JCYJ20170413164535041)the Science,Technology and Innovation Commission of Shenzhen Municipality(JCYJ20160429185235132)a Helmholtz-CAS Joint Research grant(GJHZ1508)Guangdong Provincial Key Laboratory of Brain Connectome and Behavior(2017B030301017)the Ten Thousand Talent Program,the Guangdong Special Support Program,Key Laboratory of Shenzhen Institute of Advanced Technology(2019DP173024)the Shenzhen Key Science and Technology Infrastructure Planning Project(ZDKJ20190204002).
文摘Understanding the connection between brain and behavior in animals requires precise monitoring of their behaviors in three-dimensional(3-D)space.However,there is no available three-dimensional behavior capture system that focuses on rodents.Here,we present MouseVenue3D,an automated and low-cost system for the efficient capture of 3-D skeleton trajectories in markerless rodents.We improved the most time-consuming step in 3-D behavior capturing by developing an automatic calibration module.Then,we validated this process in behavior recognition tasks,and showed that 3-D behavioral data achieved higher accuracy than 2-D data.Subsequently,MouseVenue3D was combined with fast high-resolution miniature two-photon microscopy for synchronous neural recording and behavioral tracking in the freely-moving mouse.Finally,we successfully decoded spontaneous neuronal activity from the 3-D behavior of mice.Our findings reveal that subtle,spontaneous behavior modules are strongly correlated with spontaneous neuronal activity patterns.