期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A Distributed Cooperative Dynamic Task Planning Algorithm for Multiple Satellites Based on Multi-agent Hybrid Learning 被引量:14
1
作者 WANG Chong LI Jun JING Ning WANG Jun CHEN Hao 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2011年第4期493-505,共13页
Traditionally, heuristic re-planning algorithms are used to tackle the problem of dynamic task planning for multiple satellites. However, the traditional heuristic strategies depend on the concrete tasks, which often ... Traditionally, heuristic re-planning algorithms are used to tackle the problem of dynamic task planning for multiple satellites. However, the traditional heuristic strategies depend on the concrete tasks, which often affect the result’s optimality. Noticing that the historical information of cooperative task planning will impact the latter planning results, we propose a hybrid learning algorithm for dynamic multi-satellite task planning, which is based on the multi-agent reinforcement learning of policy iteration and the transfer learning. The reinforcement learning strategy of each satellite is described with neural networks. The policy neural network individuals with the best topological structure and weights are found by applying co-evolutionary search iteratively. To avoid the failure of the historical learning caused by the randomly occurring observation requests, a novel approach is proposed to balance the quality and efficiency of the task planning, which converts the historical learning strategy to the current initial learning strategy by applying the transfer learning algorithm. The simulations and analysis show the feasibility and adaptability of the proposed approach especially for the situation with randomly occurring observation requests. 展开更多
关键词 multiple satellites dynamic task planning problem multi-agent systems reinforcement learning neuroevolution of augmenting topologies transfer learning
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部