Striatal neurons can be either projection neurons or interneurons, with each type exhibiting distinct susceptibility to various types of brain damage. In this study, 6-hydroxydopamine was injected into the right media...Striatal neurons can be either projection neurons or interneurons, with each type exhibiting distinct susceptibility to various types of brain damage. In this study, 6-hydroxydopamine was injected into the right medial forebrain bundle to induce dopamine depletion, and/or ibotenic acid was injected into the M1 cortex to induce motor cortex lesions. Immunohistochemistry and western blot assay showed that dopaminergic depletion results in significant loss of striatal projection neurons marked by dopamine- and cyclic adenosine monophosphate-regulated phosphoprotein, molecular weight 32 k Da, calbindin, and μ-opioid receptor, while cortical lesions reversed these pathological changes. After dopaminergic deletion, the number of neuropeptide Y-positive striatal interneurons markedly increased, which was also inhibited by cortical lesioning. No noticeable change in the number of parvalbumin-positive interneurons was found in 6-hydroxydopamine-treated rats. Striatal projection neurons and interneurons show different susceptibility to dopaminergic depletion. Further, cortical lesions inhibit striatal dysfunction and damage induced by 6-hydroxydopamine, which provides a new possibility for clinical treatment of Parkinson's disease.展开更多
Several mammalian animal models of traumatic brain injury have been used, mostly rodents. However, reparative mechanisms in mammalian brain are very limited, and newly formed neurons do not survive for long time. The ...Several mammalian animal models of traumatic brain injury have been used, mostly rodents. However, reparative mechanisms in mammalian brain are very limited, and newly formed neurons do not survive for long time. The brain of adult zebrafish, a teleost fish widely used as vertebrate model, possesses high regenerative properties after injury due to the presence of numerous stem cells niches. The ventricular lining of the zebrafish dorsal telencephalon is the most studied neuronal stem cell niche because its dorso-lateral zone is considered the equivalent to the hippocampus of mammals which contains one of the two constitutive neurogenic niches of mammals. To mimic TBI, stab wound in the dorso-lateral telencephalon of zebrafish was used in studies devoted to fish regenerative properties. Brain-derived neurotrophic factor, which is known to play key roles in the repair process after traumatic brain lesions, persists around the lesioned area of injured telencephalon of adult zebrafish. These results are extensively compared to reparative processes in rodent brain. Considering the complete repair of the damaged area in fish, it could be tempting to consider brain-derived neurotrophic factor as a factor contributing to create a permissive environment that enables the establishment of new neuronal population in damaged brain.展开更多
基金supported by the National Natural Science Foundation of China,No.81471288
文摘Striatal neurons can be either projection neurons or interneurons, with each type exhibiting distinct susceptibility to various types of brain damage. In this study, 6-hydroxydopamine was injected into the right medial forebrain bundle to induce dopamine depletion, and/or ibotenic acid was injected into the M1 cortex to induce motor cortex lesions. Immunohistochemistry and western blot assay showed that dopaminergic depletion results in significant loss of striatal projection neurons marked by dopamine- and cyclic adenosine monophosphate-regulated phosphoprotein, molecular weight 32 k Da, calbindin, and μ-opioid receptor, while cortical lesions reversed these pathological changes. After dopaminergic deletion, the number of neuropeptide Y-positive striatal interneurons markedly increased, which was also inhibited by cortical lesioning. No noticeable change in the number of parvalbumin-positive interneurons was found in 6-hydroxydopamine-treated rats. Striatal projection neurons and interneurons show different susceptibility to dopaminergic depletion. Further, cortical lesions inhibit striatal dysfunction and damage induced by 6-hydroxydopamine, which provides a new possibility for clinical treatment of Parkinson's disease.
文摘Several mammalian animal models of traumatic brain injury have been used, mostly rodents. However, reparative mechanisms in mammalian brain are very limited, and newly formed neurons do not survive for long time. The brain of adult zebrafish, a teleost fish widely used as vertebrate model, possesses high regenerative properties after injury due to the presence of numerous stem cells niches. The ventricular lining of the zebrafish dorsal telencephalon is the most studied neuronal stem cell niche because its dorso-lateral zone is considered the equivalent to the hippocampus of mammals which contains one of the two constitutive neurogenic niches of mammals. To mimic TBI, stab wound in the dorso-lateral telencephalon of zebrafish was used in studies devoted to fish regenerative properties. Brain-derived neurotrophic factor, which is known to play key roles in the repair process after traumatic brain lesions, persists around the lesioned area of injured telencephalon of adult zebrafish. These results are extensively compared to reparative processes in rodent brain. Considering the complete repair of the damaged area in fish, it could be tempting to consider brain-derived neurotrophic factor as a factor contributing to create a permissive environment that enables the establishment of new neuronal population in damaged brain.