The brain is a complex network system in which a large number of neurons are widely connected to each other and transmit signals to each other.The memory characteristic of memristors makes them suitable for simulating...The brain is a complex network system in which a large number of neurons are widely connected to each other and transmit signals to each other.The memory characteristic of memristors makes them suitable for simulating neuronal synapses with plasticity.In this paper,a memristor is used to simulate a synapse,a discrete small-world neuronal network is constructed based on Rulkov neurons and its dynamical behavior is explored.We explore the influence of system parameters on the dynamical behaviors of the discrete small-world network,and the system shows a variety of firing patterns such as spiking firing and triangular burst firing when the neuronal parameterαis changed.The results of a numerical simulation based on Matlab show that the network topology can affect the synchronous firing behavior of the neuronal network,and the higher the reconnection probability and number of the nearest neurons,the more significant the synchronization state of the neurons.In addition,by increasing the coupling strength of memristor synapses,synchronization performance is promoted.The results of this paper can boost research into complex neuronal networks coupled with memristor synapses and further promote the development of neuroscience.展开更多
Research on discrete memristor-based neural networks has received much attention.However,current research mainly focuses on memristor–based discrete homogeneous neuron networks,while memristor-coupled discrete hetero...Research on discrete memristor-based neural networks has received much attention.However,current research mainly focuses on memristor–based discrete homogeneous neuron networks,while memristor-coupled discrete heterogeneous neuron networks are rarely reported.In this study,a new four-stable discrete locally active memristor is proposed and its nonvolatile and locally active properties are verified by its power-off plot and DC V–I diagram.Based on two-dimensional(2D)discrete Izhikevich neuron and 2D discrete Chialvo neuron,a heterogeneous discrete neuron network is constructed by using the proposed discrete memristor as a coupling synapse connecting the two heterogeneous neurons.Considering the coupling strength as the control parameter,chaotic firing,periodic firing,and hyperchaotic firing patterns are revealed.In particular,multiple coexisting firing patterns are observed,which are induced by different initial values of the memristor.Phase synchronization between the two heterogeneous neurons is discussed and it is found that they can achieve perfect synchronous at large coupling strength.Furthermore,the effect of Gaussian white noise on synchronization behaviors is also explored.We demonstrate that the presence of noise not only leads to the transition of firing patterns,but also achieves the phase synchronization between two heterogeneous neurons under low coupling strength.展开更多
Delirium is a severe acute neuropsychiatric syndrome that commonly occurs in the elderly and is considered an independent risk factor for later dementia.However,given its inherent complexity,few animal models of delir...Delirium is a severe acute neuropsychiatric syndrome that commonly occurs in the elderly and is considered an independent risk factor for later dementia.However,given its inherent complexity,few animal models of delirium have been established and the mechanism underlying the onset of delirium remains elusive.Here,we conducted a comparison of three mouse models of delirium induced by clinically relevant risk factors,including anesthesia with surgery(AS),systemic inflammation,and neurotransmission modulation.We found that both bacterial lipopolysaccharide(LPS)and cholinergic receptor antagonist scopolamine(Scop)induction reduced neuronal activities in the delirium-related brain network,with the latter presenting a similar pattern of reduction as found in delirium patients.Consistently,Scop injection resulted in reversible cognitive impairment with hyperactive behavior.No loss of cholinergic neurons was found with treatment,but hippocampal synaptic functions were affected.These findings provide further clues regarding the mechanism underlying delirium onset and demonstrate the successful application of the Scop injection model in mimicking delirium-like phenotypes in mice.展开更多
Spiking neural network(SNN),widely known as the third-generation neural network,has been frequently investigated due to its excellent spatiotemporal information processing capability,high biological plausibility,and l...Spiking neural network(SNN),widely known as the third-generation neural network,has been frequently investigated due to its excellent spatiotemporal information processing capability,high biological plausibility,and low energy consumption characteristics.Analogous to the working mechanism of human brain,the SNN system transmits information through the spiking action of neurons.Therefore,artificial neurons are critical building blocks for constructing SNN in hardware.Memristors are drawing growing attention due to low consumption,high speed,and nonlinearity characteristics,which are recently introduced to mimic the functions of biological neurons.Researchers have proposed multifarious memristive materials including organic materials,inorganic materials,or even two-dimensional materials.Taking advantage of the unique electrical behavior of these materials,several neuron models are successfully implemented,such as Hodgkin–Huxley model,leaky integrate-and-fire model and integrate-and-fire model.In this review,the recent reports of artificial neurons based on memristive devices are discussed.In addition,we highlight the models and applications through combining artificial neuronal devices with sensors or other electronic devices.Finally,the future challenges and outlooks of memristor-based artificial neurons are discussed,and the development of hardware implementation of brain-like intelligence system based on SNN is also prospected.展开更多
Artificial neural networks(ANN) have been extensively researched due to their significant energy-saving benefits.Hardware implementations of ANN with dropout function would be able to avoid the overfitting problem. Th...Artificial neural networks(ANN) have been extensively researched due to their significant energy-saving benefits.Hardware implementations of ANN with dropout function would be able to avoid the overfitting problem. This letter reports a dropout neuronal unit(1R1T-DNU) based on one memristor–one electrolyte-gated transistor with an ultralow energy consumption of 25 p J/spike. A dropout neural network is constructed based on such a device and has been verified by MNIST dataset, demonstrating high recognition accuracies(> 90%) within a large range of dropout probabilities up to40%. The running time can be reduced by increasing dropout probability without a significant loss in accuracy. Our results indicate the great potential of introducing such 1R1T-DNUs in full-hardware neural networks to enhance energy efficiency and to solve the overfitting problem.展开更多
Network fault diagnosis methods play a vital role in maintaining network service quality and enhancing user experience as an integral component of intelligent network management.Considering the unique characteristics ...Network fault diagnosis methods play a vital role in maintaining network service quality and enhancing user experience as an integral component of intelligent network management.Considering the unique characteristics of edge networks,such as limited resources,complex network faults,and the need for high real-time performance,enhancing and optimizing existing network fault diagnosis methods is necessary.Therefore,this paper proposes the lightweight edge-side fault diagnosis approach based on a spiking neural network(LSNN).Firstly,we use the Izhikevich neurons model to replace the Leaky Integrate and Fire(LIF)neurons model in the LSNN model.Izhikevich neurons inherit the simplicity of LIF neurons but also possess richer behavioral characteristics and flexibility to handle diverse data inputs.Inspired by Fast Spiking Interneurons(FSIs)with a high-frequency firing pattern,we use the parameters of FSIs.Secondly,inspired by the connection mode based on spiking dynamics in the basal ganglia(BG)area of the brain,we propose the pruning approach based on the FSIs of the BG in LSNN to improve computational efficiency and reduce the demand for computing resources and energy consumption.Furthermore,we propose a multiple iterative Dynamic Spike Timing Dependent Plasticity(DSTDP)algorithm to enhance the accuracy of the LSNN model.Experiments on two server fault datasets demonstrate significant precision,recall,and F1 improvements across three diagnosis dimensions.Simultaneously,lightweight indicators such as Params and FLOPs significantly reduced,showcasing the LSNN’s advanced performance and model efficiency.To conclude,experiment results on a pair of datasets indicate that the LSNN model surpasses traditional models and achieves cutting-edge outcomes in network fault diagnosis tasks.展开更多
In this paper,we investigate the evolution of spatiotemporal patterns and synchronization transitions in dependence on the information transmission delay and ion channel blocking in scale-free neuronal networks.As the...In this paper,we investigate the evolution of spatiotemporal patterns and synchronization transitions in dependence on the information transmission delay and ion channel blocking in scale-free neuronal networks.As the underlying model of neuronal dynamics,we use the Hodgkin-Huxley equations incorporating channel blocking and intrinsic noise.It is shown that delays play a significant yet subtle role in shaping the dynamics of neuronal networks.In particular,regions of irregular and regular propagating excitatory fronts related to the synchronization transitions appear intermittently as the delay increases.Moreover,the fraction of working sodium and potassium ion channels can also have a significant impact on the spatiotemporal dynamics of neuronal networks.As the fraction of blocked sodium channels increases,the frequency of excitatory events decreases,which in turn manifests as an increase in the neuronal synchrony that,however,is dysfunctional due to the virtual absence of large-amplitude excitations.Expectedly,we also show that larger coupling strengths improve synchronization irrespective of the information transmission delay and channel blocking.The presented results are also robust against the variation of the network size,thus providing insights that could facilitate understanding of the joint impact of ion channel blocking and information transmission delay on the spatiotemporal dynamics of neuronal networks.展开更多
In forest variety registration, visual traits of the plants appearance are widely used to discern different tree species. The new recognition system of leaf image strategy which based on neural network established to ...In forest variety registration, visual traits of the plants appearance are widely used to discern different tree species. The new recognition system of leaf image strategy which based on neural network established to administrate a hierarchical list of leaf images, some sorts of edge detection can be performed to identify the individual tokens of every image and the frame of the leaf can be got to differentiate the tree species. An approach based on back-propagation neuronal network is proposed and the programming language for the implementation is also Riven by using Java. The numerical simulations results have shown that the proposed leaf strategt is effective and feasible.展开更多
Synchronous firing of neurons is thought to be important for information communication in neuronal networks. This paper investigates the complete and phase synchronization in a heterogeneous small-world chaotic Hindma...Synchronous firing of neurons is thought to be important for information communication in neuronal networks. This paper investigates the complete and phase synchronization in a heterogeneous small-world chaotic Hindmarsh Rose neuronal network. The effects of various network parameters on synchronization behaviour are discussed with some biological explanations. Complete synchronization of small-world neuronal networks is studied theoretically by the master stability function method. It is shown that the coupling strength necessary for complete or phase synchronization decreases with the neuron number, the node degree and the connection density are increased. The effect of heterogeneity of neuronal networks is also considered and it is found that the network heterogeneity has an adverse effect on synchrony.展开更多
The stochastic resonance in paced time-delayed scale-free FitzHugh--Nagumo (FHN) neuronal networks is investigated. We show that an intermediate intensity of additive noise is able to optimally assist the pacemaker ...The stochastic resonance in paced time-delayed scale-free FitzHugh--Nagumo (FHN) neuronal networks is investigated. We show that an intermediate intensity of additive noise is able to optimally assist the pacemaker in imposing its rhythm on the whole ensemble. Furthermore, we reveal that appropriately tuned delays can induce stochastic multiresonances, appearing at every integer multiple of the pacemaker's oscillation period. We conclude that fine-tuned delay lengths and locally acting pacemakers are vital for ensuring optimal conditions for stochastic resonance on complex neuronal networks.展开更多
Some recent research reports that a dendritic neuron model(DNM)can achieve better performance than traditional artificial neuron networks(ANNs)on classification,prediction,and other problems when its parameters are we...Some recent research reports that a dendritic neuron model(DNM)can achieve better performance than traditional artificial neuron networks(ANNs)on classification,prediction,and other problems when its parameters are well-tuned by a learning algorithm.However,the back-propagation algorithm(BP),as a mostly used learning algorithm,intrinsically suffers from defects of slow convergence and easily dropping into local minima.Therefore,more and more research adopts non-BP learning algorithms to train ANNs.In this paper,a dynamic scale-free network-based differential evolution(DSNDE)is developed by considering the demands of convergent speed and the ability to jump out of local minima.The performance of a DSNDE trained DNM is tested on 14 benchmark datasets and a photovoltaic power forecasting problem.Nine meta-heuristic algorithms are applied into comparison,including the champion of the 2017 IEEE Congress on Evolutionary Computation(CEC2017)benchmark competition effective butterfly optimizer with covariance matrix adapted retreat phase(EBOwithCMAR).The experimental results reveal that DSNDE achieves better performance than its peers.展开更多
Spatial coherence resonance in a two-dimensional neuronal network induced by additive Gaussian coloured noise and parameter diversity is studied. We focus on the ability of additive Gaussian coloured noise and paramet...Spatial coherence resonance in a two-dimensional neuronal network induced by additive Gaussian coloured noise and parameter diversity is studied. We focus on the ability of additive Gaussian coloured noise and parameter diversity to extract a particular spatial frequency (wave number) of excitatory waves in the excitable medium of this network. We show that there exists an intermediate noise level of the coloured noise and a particular value of diversity, where a characteristic spatial frequency of the system comes forth. Hereby, it is verified that spatial coherence resonance occurs in the studied model. Furthermore, we show that the optimal noise intensity for spatial coherence resonance decays exponentially with respect to the noise correlation time. Some explanations of the observed nonlinear phenomena are also presented.展开更多
Gaussian colored noise induced spatial patterns and spatial coherence resonances in a square lattice neuronal network composed of Morris-Lecar neurons are studied.Each neuron is at resting state near a saddle-node bif...Gaussian colored noise induced spatial patterns and spatial coherence resonances in a square lattice neuronal network composed of Morris-Lecar neurons are studied.Each neuron is at resting state near a saddle-node bifurcation on invariant circle,coupled to its nearest neighbors by electronic coupling.Spiral waves with different structures and disordered spatial structures can be alternately induced within a large range of noise intensity.By calculating spatial structure function and signal-to-noise ratio(SNR),it is found that SNR values are higher when the spiral structures are simple and are lower when the spatial patterns are complex or disordered,respectively.SNR manifest multiple local maximal peaks,indicating that the colored noise can induce multiple spatial coherence resonances.The maximal SNR values decrease as the correlation time of the noise increases.These results not only provide an example of multiple resonances,but also show that Gaussian colored noise play constructive roles in neuronal network.展开更多
Phase transitions widely exist in nature and occur when some control parameters are changed. In neural systems, their macroscopic states are represented by the activity states of neuron populations, and phase transiti...Phase transitions widely exist in nature and occur when some control parameters are changed. In neural systems, their macroscopic states are represented by the activity states of neuron populations, and phase transitions between different activity states are closely related to corresponding functions in the brain. In particular, phase transitions to some rhythmic synchronous firing states play significant roles on diverse brain functions and disfunctions, such as encoding rhythmical external stimuli, epileptic seizure, etc. However, in previous studies, phase transitions in neuronal networks are almost driven by network parameters (e.g., external stimuli), and there has been no investigation about the transitions between typical activity states of neuronal networks in a self-organized way by applying plastic connection weights. In this paper, we discuss phase transitions in electrically coupled and lattice-based small-world neuronal networks (LBSW networks) under spike-timing-dependent plasticity (STDP). By applying STDP on all electrical synapses, various known and novel phase transitions could emerge in LBSW networks, particularly, the phenomenon of self-organized phase transitions (SOPTs): repeated transitions between synchronous and asynchronous firing states. We further explore the mechanics generating SOPTs on the basis of synaptic weight dynamics.展开更多
The brain is a complex network system that has the capacity to support emotion, thought, action, learning and memory, and is characterized by constant activity, constant structural remodeling, and constant attempt to ...The brain is a complex network system that has the capacity to support emotion, thought, action, learning and memory, and is characterized by constant activity, constant structural remodeling, and constant attempt to compensate for this remodeling. The basic insight that emerges from complex network organization is that substantively different networks can share common key organizational principles. Moreover, the interdependence of network organization and behavior has been successfully demonstrated for several specific tasks. From this viewpoint, increasing experimental/clinical observations suggest that mental disorders are neural network disorders. On one hand, single psychiatric disorders arise from multiple, multifactorial molecular and cellular structural/functional alterations spreading throughout local/global circuits leading to multifaceted and heterogeneous clinical symptoms. On the other hand, various mental diseases may share functional deficits across the same neural circuit as reflected in the overlap of symptoms throughout clinical diagnoses. An integrated framework including experimental measures and clinical observations will be necessary to formulate a coherent and comprehensive understanding of how neural connectivity mediates and constraints the phenotypic expression of psychiatric disorders.展开更多
Recent years,neural networks(NNs)have received increasing attention from both academia and industry.So far significant diversity among existing NNs as well as their hardware platforms makes NN programming a daunting t...Recent years,neural networks(NNs)have received increasing attention from both academia and industry.So far significant diversity among existing NNs as well as their hardware platforms makes NN programming a daunting task.In this paper,a domain-specific language(DSL)for NNs,neural network language(NNL)is proposed to deliver productivity of NN programming and portable performance of NN execution on different hardware platforms.The productivity and flexibility of NN programming are enabled by abstracting NNs as a directed graph of blocks.The language describes 4 representative and widely used NNs and runs them on 3 different hardware platforms(CPU,GPU and NN accelerator).Experimental results show that NNs written with the proposed language are,on average,14.5%better than the baseline implementations across these 3 platforms.Moreover,compared with the Caffe framework that specifically targets the GPU platform,the code can achieve similar performance.展开更多
基金Project supported by the Key Projects of Hunan Provincial Department of Education (Grant No.23A0133)the Natural Science Foundation of Hunan Province (Grant No.2022JJ30572)the National Natural Science Foundations of China (Grant No.62171401)。
文摘The brain is a complex network system in which a large number of neurons are widely connected to each other and transmit signals to each other.The memory characteristic of memristors makes them suitable for simulating neuronal synapses with plasticity.In this paper,a memristor is used to simulate a synapse,a discrete small-world neuronal network is constructed based on Rulkov neurons and its dynamical behavior is explored.We explore the influence of system parameters on the dynamical behaviors of the discrete small-world network,and the system shows a variety of firing patterns such as spiking firing and triangular burst firing when the neuronal parameterαis changed.The results of a numerical simulation based on Matlab show that the network topology can affect the synchronous firing behavior of the neuronal network,and the higher the reconnection probability and number of the nearest neurons,the more significant the synchronization state of the neurons.In addition,by increasing the coupling strength of memristor synapses,synchronization performance is promoted.The results of this paper can boost research into complex neuronal networks coupled with memristor synapses and further promote the development of neuroscience.
基金Project supported by the National Natural Science Foundations of China(Grant Nos.62171401 and 62071411).
文摘Research on discrete memristor-based neural networks has received much attention.However,current research mainly focuses on memristor–based discrete homogeneous neuron networks,while memristor-coupled discrete heterogeneous neuron networks are rarely reported.In this study,a new four-stable discrete locally active memristor is proposed and its nonvolatile and locally active properties are verified by its power-off plot and DC V–I diagram.Based on two-dimensional(2D)discrete Izhikevich neuron and 2D discrete Chialvo neuron,a heterogeneous discrete neuron network is constructed by using the proposed discrete memristor as a coupling synapse connecting the two heterogeneous neurons.Considering the coupling strength as the control parameter,chaotic firing,periodic firing,and hyperchaotic firing patterns are revealed.In particular,multiple coexisting firing patterns are observed,which are induced by different initial values of the memristor.Phase synchronization between the two heterogeneous neurons is discussed and it is found that they can achieve perfect synchronous at large coupling strength.Furthermore,the effect of Gaussian white noise on synchronization behaviors is also explored.We demonstrate that the presence of noise not only leads to the transition of firing patterns,but also achieves the phase synchronization between two heterogeneous neurons under low coupling strength.
基金supported by the National Natural Science Foundation of China(82071191,82001129)Natural Science Foundation of Sichuan Province(2022NSFSC1509)+1 种基金National Clinical Research Center for Geriatrics of West China Hospital(Z2021LC001)West China Hospital 1.3.5 Project for Disciplines of Excellence(ZYYC20009)。
文摘Delirium is a severe acute neuropsychiatric syndrome that commonly occurs in the elderly and is considered an independent risk factor for later dementia.However,given its inherent complexity,few animal models of delirium have been established and the mechanism underlying the onset of delirium remains elusive.Here,we conducted a comparison of three mouse models of delirium induced by clinically relevant risk factors,including anesthesia with surgery(AS),systemic inflammation,and neurotransmission modulation.We found that both bacterial lipopolysaccharide(LPS)and cholinergic receptor antagonist scopolamine(Scop)induction reduced neuronal activities in the delirium-related brain network,with the latter presenting a similar pattern of reduction as found in delirium patients.Consistently,Scop injection resulted in reversible cognitive impairment with hyperactive behavior.No loss of cholinergic neurons was found with treatment,but hippocampal synaptic functions were affected.These findings provide further clues regarding the mechanism underlying delirium onset and demonstrate the successful application of the Scop injection model in mimicking delirium-like phenotypes in mice.
基金supported financially by the fund from the Ministry of Science and Technology of China(Grant No.2019YFB2205100)the National Science Fund for Distinguished Young Scholars(No.52025022)+3 种基金the National Nature Science Foundation of China(Grant Nos.U19A2091,62004016,51732003,52072065,1197407252272140 and 52372137)the‘111’Project(Grant No.B13013)the Fundamental Research Funds for the Central Universities(Nos.2412023YQ004 and 2412022QD036)the funding from Jilin Province(Grant Nos.20210201062GX,20220502002GH,20230402072GH,20230101017JC and 20210509045RQ)。
文摘Spiking neural network(SNN),widely known as the third-generation neural network,has been frequently investigated due to its excellent spatiotemporal information processing capability,high biological plausibility,and low energy consumption characteristics.Analogous to the working mechanism of human brain,the SNN system transmits information through the spiking action of neurons.Therefore,artificial neurons are critical building blocks for constructing SNN in hardware.Memristors are drawing growing attention due to low consumption,high speed,and nonlinearity characteristics,which are recently introduced to mimic the functions of biological neurons.Researchers have proposed multifarious memristive materials including organic materials,inorganic materials,or even two-dimensional materials.Taking advantage of the unique electrical behavior of these materials,several neuron models are successfully implemented,such as Hodgkin–Huxley model,leaky integrate-and-fire model and integrate-and-fire model.In this review,the recent reports of artificial neurons based on memristive devices are discussed.In addition,we highlight the models and applications through combining artificial neuronal devices with sensors or other electronic devices.Finally,the future challenges and outlooks of memristor-based artificial neurons are discussed,and the development of hardware implementation of brain-like intelligence system based on SNN is also prospected.
基金Project supported by the National Key Research and Development Program of China (Grant Nos. 2021YFA1202600 and 2023YFE0208600)in part by the National Natural Science Foundation of China (Grant Nos. 62174082, 92364106, 61921005, 92364204, and 62074075)。
文摘Artificial neural networks(ANN) have been extensively researched due to their significant energy-saving benefits.Hardware implementations of ANN with dropout function would be able to avoid the overfitting problem. This letter reports a dropout neuronal unit(1R1T-DNU) based on one memristor–one electrolyte-gated transistor with an ultralow energy consumption of 25 p J/spike. A dropout neural network is constructed based on such a device and has been verified by MNIST dataset, demonstrating high recognition accuracies(> 90%) within a large range of dropout probabilities up to40%. The running time can be reduced by increasing dropout probability without a significant loss in accuracy. Our results indicate the great potential of introducing such 1R1T-DNUs in full-hardware neural networks to enhance energy efficiency and to solve the overfitting problem.
基金supported by National Key R&D Program of China(2019YFB2103202).
文摘Network fault diagnosis methods play a vital role in maintaining network service quality and enhancing user experience as an integral component of intelligent network management.Considering the unique characteristics of edge networks,such as limited resources,complex network faults,and the need for high real-time performance,enhancing and optimizing existing network fault diagnosis methods is necessary.Therefore,this paper proposes the lightweight edge-side fault diagnosis approach based on a spiking neural network(LSNN).Firstly,we use the Izhikevich neurons model to replace the Leaky Integrate and Fire(LIF)neurons model in the LSNN model.Izhikevich neurons inherit the simplicity of LIF neurons but also possess richer behavioral characteristics and flexibility to handle diverse data inputs.Inspired by Fast Spiking Interneurons(FSIs)with a high-frequency firing pattern,we use the parameters of FSIs.Secondly,inspired by the connection mode based on spiking dynamics in the basal ganglia(BG)area of the brain,we propose the pruning approach based on the FSIs of the BG in LSNN to improve computational efficiency and reduce the demand for computing resources and energy consumption.Furthermore,we propose a multiple iterative Dynamic Spike Timing Dependent Plasticity(DSTDP)algorithm to enhance the accuracy of the LSNN model.Experiments on two server fault datasets demonstrate significant precision,recall,and F1 improvements across three diagnosis dimensions.Simultaneously,lightweight indicators such as Params and FLOPs significantly reduced,showcasing the LSNN’s advanced performance and model efficiency.To conclude,experiment results on a pair of datasets indicate that the LSNN model surpasses traditional models and achieves cutting-edge outcomes in network fault diagnosis tasks.
基金supported by the National Natural Science Foundation of China(11172017 and 10972001)the Fujian Natural Science Foundation of China(2009J05004)a Key Project of Fujian Provincial Universities(Information Technology Research Based on Mathematics)
文摘In this paper,we investigate the evolution of spatiotemporal patterns and synchronization transitions in dependence on the information transmission delay and ion channel blocking in scale-free neuronal networks.As the underlying model of neuronal dynamics,we use the Hodgkin-Huxley equations incorporating channel blocking and intrinsic noise.It is shown that delays play a significant yet subtle role in shaping the dynamics of neuronal networks.In particular,regions of irregular and regular propagating excitatory fronts related to the synchronization transitions appear intermittently as the delay increases.Moreover,the fraction of working sodium and potassium ion channels can also have a significant impact on the spatiotemporal dynamics of neuronal networks.As the fraction of blocked sodium channels increases,the frequency of excitatory events decreases,which in turn manifests as an increase in the neuronal synchrony that,however,is dysfunctional due to the virtual absence of large-amplitude excitations.Expectedly,we also show that larger coupling strengths improve synchronization irrespective of the information transmission delay and channel blocking.The presented results are also robust against the variation of the network size,thus providing insights that could facilitate understanding of the joint impact of ion channel blocking and information transmission delay on the spatiotemporal dynamics of neuronal networks.
基金Foundation project: This paper was supported by National Natural Science Foundation of China (No. 30371126).
文摘In forest variety registration, visual traits of the plants appearance are widely used to discern different tree species. The new recognition system of leaf image strategy which based on neural network established to administrate a hierarchical list of leaf images, some sorts of edge detection can be performed to identify the individual tokens of every image and the frame of the leaf can be got to differentiate the tree species. An approach based on back-propagation neuronal network is proposed and the programming language for the implementation is also Riven by using Java. The numerical simulations results have shown that the proposed leaf strategt is effective and feasible.
基金supported by the National Natural Science Foundation of China (Grant No 10872014)
文摘Synchronous firing of neurons is thought to be important for information communication in neuronal networks. This paper investigates the complete and phase synchronization in a heterogeneous small-world chaotic Hindmarsh Rose neuronal network. The effects of various network parameters on synchronization behaviour are discussed with some biological explanations. Complete synchronization of small-world neuronal networks is studied theoretically by the master stability function method. It is shown that the coupling strength necessary for complete or phase synchronization decreases with the neuron number, the node degree and the connection density are increased. The effect of heterogeneity of neuronal networks is also considered and it is found that the network heterogeneity has an adverse effect on synchrony.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10672140,10972001 and 10832006)Matjaz Perc individually acknowledges the Support from the Slovenian Research Agency (Grant Nos. Z1-9629 and Z1-2032-2547)
文摘The stochastic resonance in paced time-delayed scale-free FitzHugh--Nagumo (FHN) neuronal networks is investigated. We show that an intermediate intensity of additive noise is able to optimally assist the pacemaker in imposing its rhythm on the whole ensemble. Furthermore, we reveal that appropriately tuned delays can induce stochastic multiresonances, appearing at every integer multiple of the pacemaker's oscillation period. We conclude that fine-tuned delay lengths and locally acting pacemakers are vital for ensuring optimal conditions for stochastic resonance on complex neuronal networks.
基金This work was partially supported by the National Natural Science Foundation of China(62073173,61833011)the Natural Science Foundation of Jiangsu Province,China(BK20191376)the Nanjing University of Posts and Telecommunications(NY220193,NY220145)。
文摘Some recent research reports that a dendritic neuron model(DNM)can achieve better performance than traditional artificial neuron networks(ANNs)on classification,prediction,and other problems when its parameters are well-tuned by a learning algorithm.However,the back-propagation algorithm(BP),as a mostly used learning algorithm,intrinsically suffers from defects of slow convergence and easily dropping into local minima.Therefore,more and more research adopts non-BP learning algorithms to train ANNs.In this paper,a dynamic scale-free network-based differential evolution(DSNDE)is developed by considering the demands of convergent speed and the ability to jump out of local minima.The performance of a DSNDE trained DNM is tested on 14 benchmark datasets and a photovoltaic power forecasting problem.Nine meta-heuristic algorithms are applied into comparison,including the champion of the 2017 IEEE Congress on Evolutionary Computation(CEC2017)benchmark competition effective butterfly optimizer with covariance matrix adapted retreat phase(EBOwithCMAR).The experimental results reveal that DSNDE achieves better performance than its peers.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10872014)
文摘Spatial coherence resonance in a two-dimensional neuronal network induced by additive Gaussian coloured noise and parameter diversity is studied. We focus on the ability of additive Gaussian coloured noise and parameter diversity to extract a particular spatial frequency (wave number) of excitatory waves in the excitable medium of this network. We show that there exists an intermediate noise level of the coloured noise and a particular value of diversity, where a characteristic spatial frequency of the system comes forth. Hereby, it is verified that spatial coherence resonance occurs in the studied model. Furthermore, we show that the optimal noise intensity for spatial coherence resonance decays exponentially with respect to the noise correlation time. Some explanations of the observed nonlinear phenomena are also presented.
基金Supported by National Natural Science Foundation of China under Grant Nos. 11072135 and 10772101the Fundamental Research Funds for the Central Universities under Grant No. GK200902025
文摘Gaussian colored noise induced spatial patterns and spatial coherence resonances in a square lattice neuronal network composed of Morris-Lecar neurons are studied.Each neuron is at resting state near a saddle-node bifurcation on invariant circle,coupled to its nearest neighbors by electronic coupling.Spiral waves with different structures and disordered spatial structures can be alternately induced within a large range of noise intensity.By calculating spatial structure function and signal-to-noise ratio(SNR),it is found that SNR values are higher when the spiral structures are simple and are lower when the spatial patterns are complex or disordered,respectively.SNR manifest multiple local maximal peaks,indicating that the colored noise can induce multiple spatial coherence resonances.The maximal SNR values decrease as the correlation time of the noise increases.These results not only provide an example of multiple resonances,but also show that Gaussian colored noise play constructive roles in neuronal network.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11135001 and 11174034)
文摘Phase transitions widely exist in nature and occur when some control parameters are changed. In neural systems, their macroscopic states are represented by the activity states of neuron populations, and phase transitions between different activity states are closely related to corresponding functions in the brain. In particular, phase transitions to some rhythmic synchronous firing states play significant roles on diverse brain functions and disfunctions, such as encoding rhythmical external stimuli, epileptic seizure, etc. However, in previous studies, phase transitions in neuronal networks are almost driven by network parameters (e.g., external stimuli), and there has been no investigation about the transitions between typical activity states of neuronal networks in a self-organized way by applying plastic connection weights. In this paper, we discuss phase transitions in electrically coupled and lattice-based small-world neuronal networks (LBSW networks) under spike-timing-dependent plasticity (STDP). By applying STDP on all electrical synapses, various known and novel phase transitions could emerge in LBSW networks, particularly, the phenomenon of self-organized phase transitions (SOPTs): repeated transitions between synchronous and asynchronous firing states. We further explore the mechanics generating SOPTs on the basis of synaptic weight dynamics.
文摘The brain is a complex network system that has the capacity to support emotion, thought, action, learning and memory, and is characterized by constant activity, constant structural remodeling, and constant attempt to compensate for this remodeling. The basic insight that emerges from complex network organization is that substantively different networks can share common key organizational principles. Moreover, the interdependence of network organization and behavior has been successfully demonstrated for several specific tasks. From this viewpoint, increasing experimental/clinical observations suggest that mental disorders are neural network disorders. On one hand, single psychiatric disorders arise from multiple, multifactorial molecular and cellular structural/functional alterations spreading throughout local/global circuits leading to multifaceted and heterogeneous clinical symptoms. On the other hand, various mental diseases may share functional deficits across the same neural circuit as reflected in the overlap of symptoms throughout clinical diagnoses. An integrated framework including experimental measures and clinical observations will be necessary to formulate a coherent and comprehensive understanding of how neural connectivity mediates and constraints the phenotypic expression of psychiatric disorders.
基金the National Key Research and Development Program of China(No.2017YFA0700902,2017YFB1003101)the National Natural Science Foundation of China(No.61472396,61432016,61473275,61522211,61532016,61521092,61502446,61672491,61602441,61602446,61732002,61702478)+3 种基金the 973 Program of China(No.2015CB358800)National Science and Technology Major Project(No.2018ZX01031102)the Transformation and Transfer of Scientific and Technological Achievements of Chinese Academy of Sciences(No.KFJ-HGZX-013)Strategic Priority Research Program of Chinese Academy of Sciences(No.XDBS01050200).
文摘Recent years,neural networks(NNs)have received increasing attention from both academia and industry.So far significant diversity among existing NNs as well as their hardware platforms makes NN programming a daunting task.In this paper,a domain-specific language(DSL)for NNs,neural network language(NNL)is proposed to deliver productivity of NN programming and portable performance of NN execution on different hardware platforms.The productivity and flexibility of NN programming are enabled by abstracting NNs as a directed graph of blocks.The language describes 4 representative and widely used NNs and runs them on 3 different hardware platforms(CPU,GPU and NN accelerator).Experimental results show that NNs written with the proposed language are,on average,14.5%better than the baseline implementations across these 3 platforms.Moreover,compared with the Caffe framework that specifically targets the GPU platform,the code can achieve similar performance.