Traumatic spinal cord injury (SCI) causes motor paralysis, sensory anesthesia and autonomic dysfunction below the le- sion site and additionally some SCI patients refer neuropathic pain together with these signs and...Traumatic spinal cord injury (SCI) causes motor paralysis, sensory anesthesia and autonomic dysfunction below the le- sion site and additionally some SCI patients refer neuropathic pain together with these signs and symptoms. Clinical and experimental studies have revealed the main pathological changes of injured spinal cord implicated in all these signs and symptoms, including neuropathic pain. After few hours of traumatic SCI, it is usual to observe broken blood brain barrier with plasma and blood cells extravasation, cell necrosis, disruption of ascending and descending spinal cord pathways and increased potassium and glutamate. Glutamate contributes to excitotoxicity of neurons whereas potassium facilitates ectopic depolarization of survival neurons and activation of resident microglia.展开更多
Stroke is one of the leading causes of disability and death globally.It occurs when a major artery is occluded in the brain and leads to death of cells within the injured tissue.(+)-Borneol,a simple bicyclic monote...Stroke is one of the leading causes of disability and death globally.It occurs when a major artery is occluded in the brain and leads to death of cells within the injured tissue.(+)-Borneol,a simple bicyclic monoterpene extracted from traditional Chinese medicine,is widely used in various types of diseases.However,no study has proved the effects of(+)-borneol on functional recovery from permanent ischemic stroke and the mechanism is still unknown.Here,we report that in the rat model of permanent cerebral ischemia,we found that(+)-borneol(1.0 mg/kg) significantly ameliorated infarct size and neurological scores via reducing the expression of inducible nitric oxide synthase(iNOS)and tumor necrosis factor-alpha(TNF-α) in a dose dependent manner.Notably,(+)-borneol showed long-term effects on the improvement of sensorimotor functions in the photothrombotic model of stroke,which decreased the number of foot faults in the grid-walking task and forelimb asymmetry scores in the cylinder task,at least in part through reducing loss of dendritic spines in the length,brunch number and density.These findings suggest that(+)-borneol could serve as a therapeutic target for ischemic stroke.展开更多
Non-invasive brain current stimulation(NIBS) is a promising and versatile tool for inducing neuroplasticity,protection and functional rehabilitation of damaged neuronal systems.It is technically simple,requires no s...Non-invasive brain current stimulation(NIBS) is a promising and versatile tool for inducing neuroplasticity,protection and functional rehabilitation of damaged neuronal systems.It is technically simple,requires no surgery,and has significant beneficial effects.However,there are various technical approaches for NIBS which influence neuronal networks in significantly different ways.Transcranial direct current stimulation(t DCS),alternating current stimulation(ACS) and repetitive transcranial magnetic stimulation(r TMS) all have been applied to modulate brain activity in animal experiments under normal and pathological conditions.Also clinical trials have shown that t DCS,r TMS and ACS induce significant behavioural effects and can – depending on the parameters chosen – enhance or decrease brain excitability and influence performance and learning as well as rehabilitation and protective mechanisms.The diverse phaenomena and partially opposing effects of NIBS are not yet fully understood and mechanisms of action need to be explored further in order to select appropriate parameters for a given task,such as current type and strength,timing,distribution of current densities and electrode position.In this review,we will discuss the various parameters which need to be considered when designing a NIBS protocol and will put them into context with the envisaged applications in experimental neurobiology and medicine such as vision restoration,motor rehabilitation and cognitive enhancement.展开更多
基金funded by Accions Singulars de R+D(Sing 12/17)del Vicerectorat de Recerca de la Universitat de Girona,Girona,Spain
文摘Traumatic spinal cord injury (SCI) causes motor paralysis, sensory anesthesia and autonomic dysfunction below the le- sion site and additionally some SCI patients refer neuropathic pain together with these signs and symptoms. Clinical and experimental studies have revealed the main pathological changes of injured spinal cord implicated in all these signs and symptoms, including neuropathic pain. After few hours of traumatic SCI, it is usual to observe broken blood brain barrier with plasma and blood cells extravasation, cell necrosis, disruption of ascending and descending spinal cord pathways and increased potassium and glutamate. Glutamate contributes to excitotoxicity of neurons whereas potassium facilitates ectopic depolarization of survival neurons and activation of resident microglia.
基金supported by grants from National Natural Science Foundation of China(91232304, 31530091,81571188 and 81222016)the Natural Science Foundation of Jiangsu Province(BK2011029)Distinguished Young Scientists Fund(BK20130040)
文摘Stroke is one of the leading causes of disability and death globally.It occurs when a major artery is occluded in the brain and leads to death of cells within the injured tissue.(+)-Borneol,a simple bicyclic monoterpene extracted from traditional Chinese medicine,is widely used in various types of diseases.However,no study has proved the effects of(+)-borneol on functional recovery from permanent ischemic stroke and the mechanism is still unknown.Here,we report that in the rat model of permanent cerebral ischemia,we found that(+)-borneol(1.0 mg/kg) significantly ameliorated infarct size and neurological scores via reducing the expression of inducible nitric oxide synthase(iNOS)and tumor necrosis factor-alpha(TNF-α) in a dose dependent manner.Notably,(+)-borneol showed long-term effects on the improvement of sensorimotor functions in the photothrombotic model of stroke,which decreased the number of foot faults in the grid-walking task and forelimb asymmetry scores in the cylinder task,at least in part through reducing loss of dendritic spines in the length,brunch number and density.These findings suggest that(+)-borneol could serve as a therapeutic target for ischemic stroke.
文摘Non-invasive brain current stimulation(NIBS) is a promising and versatile tool for inducing neuroplasticity,protection and functional rehabilitation of damaged neuronal systems.It is technically simple,requires no surgery,and has significant beneficial effects.However,there are various technical approaches for NIBS which influence neuronal networks in significantly different ways.Transcranial direct current stimulation(t DCS),alternating current stimulation(ACS) and repetitive transcranial magnetic stimulation(r TMS) all have been applied to modulate brain activity in animal experiments under normal and pathological conditions.Also clinical trials have shown that t DCS,r TMS and ACS induce significant behavioural effects and can – depending on the parameters chosen – enhance or decrease brain excitability and influence performance and learning as well as rehabilitation and protective mechanisms.The diverse phaenomena and partially opposing effects of NIBS are not yet fully understood and mechanisms of action need to be explored further in order to select appropriate parameters for a given task,such as current type and strength,timing,distribution of current densities and electrode position.In this review,we will discuss the various parameters which need to be considered when designing a NIBS protocol and will put them into context with the envisaged applications in experimental neurobiology and medicine such as vision restoration,motor rehabilitation and cognitive enhancement.