In the present study, cultured human SHG-44 glioma cells were subjected to a hypoxic environment simulated using the CoOl2 method. Flow cytometry showed increased reactive oxygen species production in these cells. Rea...In the present study, cultured human SHG-44 glioma cells were subjected to a hypoxic environment simulated using the CoOl2 method. Flow cytometry showed increased reactive oxygen species production in these cells. Real-time reverse transcription-PCR showed significantly increased hypoxia-inducible factor-la mRNA expression in cells exposed to the hypoxic condition. The antioxidant N-acetylcysteine significantly inhibited reactive oxygen species production and reduced hypoxia-inducible factor-la mRNA expression in normoxic and hypoxic groups, especially in the latter group. These findings indicate that hypoxia induces reactive oxygen species production and hypoxia-inducible factor-la mRNA expression in human SHG-44 glioma cells, and that the antioxidant N-acetylcysteine can inhibit these changes.展开更多
文摘In the present study, cultured human SHG-44 glioma cells were subjected to a hypoxic environment simulated using the CoOl2 method. Flow cytometry showed increased reactive oxygen species production in these cells. Real-time reverse transcription-PCR showed significantly increased hypoxia-inducible factor-la mRNA expression in cells exposed to the hypoxic condition. The antioxidant N-acetylcysteine significantly inhibited reactive oxygen species production and reduced hypoxia-inducible factor-la mRNA expression in normoxic and hypoxic groups, especially in the latter group. These findings indicate that hypoxia induces reactive oxygen species production and hypoxia-inducible factor-la mRNA expression in human SHG-44 glioma cells, and that the antioxidant N-acetylcysteine can inhibit these changes.