期刊文献+
共找到4,758篇文章
< 1 2 238 >
每页显示 20 50 100
Are TrkB receptor agonists the right tool to fulfill the promises for a therapeutic value of the brain-derived neurotrophic factor? 被引量:4
1
作者 Marta Zagrebelsky Martin Korte 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期29-34,共6页
Brain-derived neurotrophic factor signaling via its receptor tro pomyosin receptor kinase B regulates several crucial physiological processes.It has been shown to act in the brain,promoting neuronal survival,growth,an... Brain-derived neurotrophic factor signaling via its receptor tro pomyosin receptor kinase B regulates several crucial physiological processes.It has been shown to act in the brain,promoting neuronal survival,growth,and plasticity as well as in the rest of the body where it is involved in regulating for instance aspects of the metabolism.Due to its crucial and very pleiotro pic activity,reduction of brain-derived neurotrophic factor levels and alterations in the brain-derived neurotrophic factor/tropomyosin receptor kinase B signaling have been found to be associated with a wide spectrum of neurological diseases.Howeve r,because of its poor bioavailability and pharmacological properties,brain-derived neurotrophic factor itself has a very low therapeutic value.Moreover,the concomitant binding of exogenous brain-derived neurotrophic factor to the p75 neurotrophin receptor has the potential to elicit several unwanted and deleterious side effects.Therefo re,developing tools and approaches to specifically promote tropomyosin receptor kinase B signaling has become an important goal of translational research.Among the newly developed tools are different categories of tropomyosin receptor kinase B receptor agonist molecules.In this review,we give a comprehensive description of the diffe rent tro pomyosin receptor kinase B receptor agonist drugs developed so far and of the res ults of their application in animal models of several neurological diseases.Moreover,we discuss the main benefits of tropomyosin receptor kinase B receptor agonists,concentrating especially on the new tropomyosin receptor kinase B agonist antibodies.The benefits observed both in vitro and in vivo upon application of tropomyosin receptor kinase B receptor agonist drugs seem to predominantly depend on their general neuroprotective activity and their ability to promote neuronal plasticity.Moreover,tro pomyosin receptor kinase B agonist antibodies have been shown to specifically bind the tropomyosin receptor kinase B receptor and not p75 neurotrophin receptor.Therefore,while,based on the current knowledge,the tropomyosin receptor kinase B receptor agonists do not seem to have the potential to reve rse the disease pathology per se,promoting brainderived neurotrophic factor/tro pomyosin receptor kinase B signaling still has a very high therapeutic relevance. 展开更多
关键词 Alzheimer's disease brain-derived neurotrophic factor DEPRESSION Parkinson's disease tropomyosin receptor kinase B receptor
下载PDF
Sorl1 knockout inhibits expression of brain-derived neurotrophic factor:involvement in the development of late-onset Alzheimer's disease 被引量:3
2
作者 Mingri Zhao Xun Chen +7 位作者 Jiangfeng Liu Yanjin Feng Chen Wang Ting Xu Wanxi Liu Xionghao Liu Mujun Liu Deren Hou 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1602-1607,共6页
Sortilin-related receptor 1(SORL1)is a critical gene associated with late-onset Alzheimer’s disease.SORL1 contributes to the development and progression of this neurodegenerative condition by affecting the transport ... Sortilin-related receptor 1(SORL1)is a critical gene associated with late-onset Alzheimer’s disease.SORL1 contributes to the development and progression of this neurodegenerative condition by affecting the transport and metabolism of intracellularβ-amyloid precursor protein.To better understand the underlying mechanisms of SORL1 in the pathogenesis of late-onset Alzheimer s disease,in this study,we established a mouse model of SorI1 gene knockout using cluste red regularly inters paced short palindro mic repeats-associated protein 9 technology.We found that Sorl1-knocko ut mice displayed deficits in learning and memory.Furthermore,the expression of brain-derived neurotrophic factor was significantly downregulated in the hippocampus and co rtex,and amyloidβ-protein deposits were observed in the brains of 5orl1-knockout mice.In vitro,hippocampal neuronal cell synapses from homozygous Sorl1-knockout mice were impaired.The expression of synaptic proteins,including Drebrin and NR2B,was significantly reduced,and also their colocalization.Additionally,by knocking out the Sorl1 gene in N2a cells,we found that expression of the N-methyl-D-aspartate receptor,NR2B,and cyclic adenosine monophosphate-response element binding protein was also inhibited.These findings suggest that SORL1 participates in the pathogenesis of late-onset Alzheimer s disease by regulating the N-methyl-D-aspartate receptor NR2B/cyclic adenosine monophosphate-response element binding protein signaling axis. 展开更多
关键词 brain-derived neurotrophic factor late-onset Alzheimer’s disease N-methyl-D-aspartate receptor sortilin-related receptor 1 SYNAPSE
下载PDF
The effects of exercise interventions on brain-derived neurotrophic factor levels in children and adolescents:a meta-analysis
3
作者 Xueyun Shao Longfei He Yangyang Liu 《Neural Regeneration Research》 SCIE CAS 2025年第5期1513-1520,共8页
Brain-derived neurotrophic factor is a crucial neurotrophic factor that plays a significant role in brain health. Although the vast majority of meta-analyses have confirmed that exercise interventions can increase bra... Brain-derived neurotrophic factor is a crucial neurotrophic factor that plays a significant role in brain health. Although the vast majority of meta-analyses have confirmed that exercise interventions can increase brain-derived neurotrophic factor levels in children and adolescents, the effects of specific types of exercise on brain-derived neurotrophic factor levels are still controversial. To address this issue, we used meta-analytic methods to quantitatively evaluate, analyze, and integrate relevant studies. Our goals were to formulate general conclusions regarding the use of exercise interventions, explore the physiological mechanisms by which exercise improves brain health and cognitive ability in children and adolescents, and provide a reliable foundation for follow-up research. We used the Pub Med, Web of Science, Science Direct, Springer, Wiley Online Library, Weipu, Wanfang, and China National Knowledge Infrastructure databases to search for randomized controlled trials examining the influences of exercise interventions on brain-derived neurotrophic factor levels in children and adolescents. The extracted data were analyzed using Review Manager 5.3. According to the inclusion criteria, we assessed randomized controlled trials in which the samples were mainly children and adolescents, and the outcome indicators were measured before and after the intervention. We excluded animal experiments, studies that lacked a control group, and those that did not report quantitative results. The mean difference(MD;before versus after intervention) was used to evaluate the effect of exercise on brain-derived neurotrophic factor levels in children and adolescents. Overall, 531 participants(60 children and 471 adolescents, 10.9–16.1 years) were included from 13 randomized controlled trials. Heterogeneity was evaluated using the Q statistic and I^(2) test provided by Review Manager software. The meta-analysis showed that there was no heterogeneity among the studies(P = 0.67, I^(2) = 0.00%). The combined effect of the interventions was significant(MD = 2.88, 95% CI: 1.53–4.22, P < 0.0001), indicating that the brain-derived neurotrophic factor levels of the children and adolescents in the exercise group were significantly higher than those in the control group. In conclusion, different types of exercise interventions significantly increased brain-derived neurotrophic factor levels in children and adolescents. However, because of the small sample size of this meta-analysis, more high-quality research is needed to verify our conclusions. This metaanalysis was registered at PROSPERO(registration ID: CRD42023439408). 展开更多
关键词 adolescents brain-derived neurotrophic factor CHILDREN EXERCISE META-ANALYSIS randomized controlled trials
下载PDF
Shugan Jieyu capsule effects on peripheral blood micro-124, micro- 132, and brain-derived neurotrophic factor in patients with mild to moderate depression
4
作者 Xian Zhang Yang Liu +6 位作者 Hua-Fei Tang Feng Jiang Chun-Liang Chen Ting-Ting Wang Hui-Zhong Gu Qiang Zhao Rui Ma 《World Journal of Psychiatry》 SCIE 2024年第9期1354-1363,共10页
BACKGROUND To assess the effectiveness of Shugan Jieyu capsules on peripheral blood miR-124,miR-132,and brain-derived neurotrophic factor(BDNF)levels in patients with mild to moderate depression following coronary art... BACKGROUND To assess the effectiveness of Shugan Jieyu capsules on peripheral blood miR-124,miR-132,and brain-derived neurotrophic factor(BDNF)levels in patients with mild to moderate depression following coronary artery intervention[percuta-neous coronary intervention(PCI)]for coronary heart disease.Patients with mild-to-moderate depression of the liver-qi stagnation type after PCI for coronary heart disease at the 305th Hospital of the People’s Liberation Army were enrolled from June 2022 to November 2023 and randomly assigned to two groups:Experimental(treated with Shugan Jieyu capsules)and control(tr-eated with escitalopram oxalate tablets).This study compared the antidepressant effects of these treatments using 17-item Hamilton Rating Scale for Depression(HAMD-17)scores,metabolic equivalents,low-density lipoprotein cholesterol,BDNF,high-sensitivity C-reactive protein levels,miR-124 and miR-132 levels,distribution of immune-related lymphocyte subsets,and traditional Chinese me-dicine syndrome scores before and after 6 weeks of treatment.RESULTS No significant difference was observed in any index between the two groups before treatment(P>0.05).After treatment,the total efficacy rates were 93.33%and 90.00%in the experimental and control groups,respectively.Experimental group had significantly lower scores for the main and secondary syndromes compared to the control group(P<0.05).No significant difference was observed in the metabolic equivalents between the two groups be-fore and after treatment(P>0.05).The levels of low-density lipoprotein cholesterol,high-sensitivity C-reactive pro-tein,and miR-132 were significantly lower,whereas those of miR-124,BDNF,CD3+T lymphocytes,CD3+CD4+T helper lymphocytes,and CD3+CD4+/CD3+CD8+cells were significantly higher in the experimental group com-pared to the control group(P<0.05).The incidence of adverse reactions during experimental group was signi-ficantly lower than that in control group(P<0.05).CONCLUSION Shugan Jieyu capsules have good efficacy in patients with mild-to-moderate depression after PCI,and its me-chanism may contribute to the regulation of miR-124,miR-132,BDNF levels,and lymphoid immune cells. 展开更多
关键词 Shugan Jieyu capsule Coronary heart disease DEPRESSION Escitalopram oxalate tablet Micro-124 Micro-132 brain-derived neurotrophic factor
下载PDF
Research Progress on Brain-Derived Neurotrophic Factor (BDNF) in the Sequelae of Stroke
5
作者 Fuzhou Xie Weicong Chen Longjian Huang 《Journal of Biosciences and Medicines》 2024年第9期196-203,共8页
The research progress of brain-derived neurotrophic factor (BDNF) in the treatment of sequelae of stroke is an important topic. Stroke is among the diseases with the highest mortality and disability rates among the el... The research progress of brain-derived neurotrophic factor (BDNF) in the treatment of sequelae of stroke is an important topic. Stroke is among the diseases with the highest mortality and disability rates among the elderly in China. BDNF plays an important role in the development and functional maintenance of the nervous system. In recent years, the application value of BDNF in rehabilitation therapy has gradually received attention. This study has adopted a systematic literature review method, searched Chinese and English databases, screened relevant studies, and conducted data extraction and quality evaluation. This review systematically introduced the research progress of BDNF in the correlation with post-stroke sequelae, with special attention to its application in post-stroke depression, motor dysfunction, and cognitive dysfunction. The results showed that a decrease in BDNF levels is closely related to the exacerbation of depressive symptoms, limited recovery of motor dysfunction, and the occurrence of cognitive dysfunction. BDNF, as a key neurobiological factor, has shown significant potential in the rehabilitation treatment of stroke. By exploring the potential of BDNF as a therapeutic target to prevent and treat sequelae of ischemic stroke, the current research bottlenecks, and the development trends of future treatment strategies. 展开更多
关键词 brain-derived neurotrophic factor Sequelae of Stroke NEUROREHABILITATION
下载PDF
Glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor regulate the interaction between astrocytes and Schwann cells at the trigeminal root entry zone
6
作者 Madeha Ishag Adam Ling Lin +6 位作者 Amir Mahmoud Makin Xiao-Fen Zhang Lu-Xi Zhou Xin-Yue Liao Li Zhao Feng Wang Dao-Shu Luo 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第6期1364-1370,共7页
The trigeminal root entry zone is the zone at which the myelination switches from peripheral Schwann cells to central oligodendrocytes.Its special anatomical and physiological structure renders it susceptible to nerve... The trigeminal root entry zone is the zone at which the myelination switches from peripheral Schwann cells to central oligodendrocytes.Its special anatomical and physiological structure renders it susceptible to nerve injury.The etiology of most primary trigeminal neuralgia is closely related to microvascular compression of the trigeminal root entry zone.This study aimed to develop an efficient in vitro model mimicking the glial environment of trigeminal root entry zone as a tool to investigate the effects of glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor on the structural and functional integrity of trigeminal root entry zone and modulation of cellular interactions.Primary astrocytes and Schwann cells isolated from trigeminal root entry zone of postnatal rats were inoculated into a two-well silicon culture insert to mimic the trigeminal root entry zone microenvironment and treated with glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor.In monoculture,glial cell line-derived neurotrophic factor promoted the migration of Schwann cells,but it did not have effects on the migration of astrocytes.In the co-culture system,glial cell line-derived neurotrophic factor promoted the bidirectional migration of astrocytes and Schwann cells.Brain-derived neurotrophic factor markedly promoted the activation and migration of astrocytes.However,in the co-culture system,brain-derived neurotrophic factor inhibited the migration of astrocytes and Schwann cells to a certain degree.These findings suggest that glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor are involved in the regulation of the astrocyte-Schwann cell interaction in the co-culture system derived from the trigeminal root entry zone.This system can be used as a cell model to study the mechanism of glial dysregulation associated with trigeminal nerve injury and possible therapeutic interventions. 展开更多
关键词 ASTROCYTES brain-derived neurotrophic factor cell migration glial cell line-derived neurotrophic factor glial interaction Schwann cells trigeminal nerve
下载PDF
Neuroprotective effects of exogenous brain-derived neurotrophic factor on amyloid-beta 1-40-induced retinal degeneration 被引量:2
7
作者 Mohd Aizuddin Mohd Lazaldin Igor Iezhitsa +2 位作者 Renu Agarwal Puneet Agarwal Nafeeza Mohd Ismail 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第2期382-388,共7页
Amyloid-beta(Aβ)-related alterations,similar to those found in the brains of patients with Alzheimer's disease,have been observed in the retina of patients with glaucoma.Decreased levels of brain-derived neurotro... Amyloid-beta(Aβ)-related alterations,similar to those found in the brains of patients with Alzheimer's disease,have been observed in the retina of patients with glaucoma.Decreased levels of brain-derived neurotrophic factor(BDNF)are believed to be associated with the neurotoxic effects of Aβpeptide.To investigate the mechanism underlying the neuroprotective effects of BDNF on Aβ_(1-40)-induced retinal injury in Sprague-Dawley rats,we treated rats by intravitreal administration of phosphate-buffered saline(control),Aβ_(1-40)(5 nM),or Aβ_(1-40)(5 nM)combined with BDNF(1μg/mL).We found that intravitreal administration of Aβ_(1-40)induced retinal ganglion cell apoptosis.Fluoro-Gold staining showed a significantly lower number of retinal ganglion cells in the Aβ_(1-40)group than in the control and BDNF groups.In the Aβ_(1-40)group,low number of RGCs was associated with increased caspase-3 expression and reduced TrkB and ERK1/2 expression.BDNF abolished Aβ_(1-40)-induced increase in the expression of caspase-3 at the gene and protein levels in the retina and upregulated TrkB and ERK1/2 expression.These findings suggest that treatment with BDNF prevents RGC apoptosis induced by Aβ_(1-40)by activating the BDNF-TrkB signaling pathway in rats. 展开更多
关键词 amyloid-beta 1-40 brain-derived neurotrophic factor FLUORO-GOLD neuroprotection retinal ganglion cells(RGC) retinal toxicity tropomyosin receptor kinase B(TrkB)
下载PDF
Role of brain-derived neurotrophic factor during the regenerative response after traumatic brain injury in adult zebrafish 被引量:5
8
作者 Pietro Cacialli Antonio Palladino Carla Lucini 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第6期941-944,共4页
Several mammalian animal models of traumatic brain injury have been used, mostly rodents. However, reparative mechanisms in mammalian brain are very limited, and newly formed neurons do not survive for long time. The ... Several mammalian animal models of traumatic brain injury have been used, mostly rodents. However, reparative mechanisms in mammalian brain are very limited, and newly formed neurons do not survive for long time. The brain of adult zebrafish, a teleost fish widely used as vertebrate model, possesses high regenerative properties after injury due to the presence of numerous stem cells niches. The ventricular lining of the zebrafish dorsal telencephalon is the most studied neuronal stem cell niche because its dorso-lateral zone is considered the equivalent to the hippocampus of mammals which contains one of the two constitutive neurogenic niches of mammals. To mimic TBI, stab wound in the dorso-lateral telencephalon of zebrafish was used in studies devoted to fish regenerative properties. Brain-derived neurotrophic factor, which is known to play key roles in the repair process after traumatic brain lesions, persists around the lesioned area of injured telencephalon of adult zebrafish. These results are extensively compared to reparative processes in rodent brain. Considering the complete repair of the damaged area in fish, it could be tempting to consider brain-derived neurotrophic factor as a factor contributing to create a permissive environment that enables the establishment of new neuronal population in damaged brain. 展开更多
关键词 brain-derived neurotrophic factor neurotrophINS neurotrophic factors brain TELENCEPHALON teleost fish traumatic brain injury LESION NEURONS
下载PDF
Therapeutic potential of brain-derived neurotrophic factor(BDNF)and a small molecular mimics of BDNF for traumatic brain injury 被引量:21
9
作者 Mary Wurzelmann Jennifer Romeika Dong Sun 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第1期7-12,共6页
Traumatic brain injury(TBI) is a major health problem worldwide.Following primary mechanical insults,a cascade of secondary injuries often leads to further neural tissue loss.Thus far there is no cure to rescue the ... Traumatic brain injury(TBI) is a major health problem worldwide.Following primary mechanical insults,a cascade of secondary injuries often leads to further neural tissue loss.Thus far there is no cure to rescue the damaged neural tissue.Current therapeutic strategies primarily target the secondary injuries focusing on neuroprotection and neuroregeneration.The neurotrophin brain-derived neurotrophic factor(BDNF) has significant effect in both aspects,promoting neuronal survival,synaptic plasticity and neurogenesis.Recently,the flavonoid 7,8-dihydroxyflavone(7,8-DHF),a small Trk B agonist that mimics BDNF function,has shown similar effects as BDNF in promoting neuronal survival and regeneration following TBI.Compared to BDNF,7,8-DHF has a longer half-life and much smaller molecular size,capable of penetrating the blood-brain barrier,which makes it possible for non-invasive clinical application.In this review,we summarize functions of the BDNF/Trk B signaling pathway and studies examining the potential of BDNF and 7,8-DHF as a therapy for TBI. 展开更多
关键词 7 8-dihydroxyflavone brain-derived neurotrophic factor tropomyosin related kinase B(TrkB) receptor traumatic brain injury neuroregeneration neuroprotection
下载PDF
Exogenous brain-derived neurotrophic factor attenuates cognitive impairment induced by okadaic acid in a rat model of Alzheimer's disease 被引量:9
10
作者 Ai-Hua Xu Yang Yang +1 位作者 Yong-Xin Sun Chao-Dong Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第12期2173-2181,共9页
Decreased expression of brain-derived neurotrophic factor(BDNF) plays an important role in the pathogenesis of Alzheimer's disease, and a typical pathological change in Alzheimer's disease is neurofibrillary tangl... Decreased expression of brain-derived neurotrophic factor(BDNF) plays an important role in the pathogenesis of Alzheimer's disease, and a typical pathological change in Alzheimer's disease is neurofibrillary tangles caused by hyperphosphorylation of tau. An in vivo model of Alzheimer's disease was developed by injecting okadaic acid(2 μL) and exogenous BDNF(2 μL) into the hippocampi of adult male Wister rats. Spatial learning and memory abilities were assessed using the Morris water maze. The expression levels of protein phosphatase 2 A(PP2 A), PP2 Ac-Yp307, p-tau(Thr231), and p-tau(Ser396/404) were detected by western blot assay. The expression levels of BDNF, TrkB, and synaptophysin mRNA were measured by quantitative real-time polymerase chain reaction. Our results indicated that BDNF expression was suppressed in the hippocampus of OA-treated rats, which resulted in learning and memory deficits. Intra-hippocampal injection of BDNF attenuated this OA-induced cognitive impairment. Finally, our findings indicated an involvement of the PI3 K/GSK-3β/AKT pathway in the mechanism of BDNF in regulating cognitive function. These results indicate that BDNF has beneficial effect on Alzheimer's disease, and highlight the potential of BDNF as a drug target for treatment of Alzheimer's disease. 展开更多
关键词 nerve regeneration Alzheimer's disease exogenous brain-derived neurotrophic factor Tau protein okadaic acid PHOSPHORYLATION PP2A- Y307 glycogen synthase kinase-3~ TRKB cognitive function brain protection neural regeneration
下载PDF
Changes in compressed neurons from dogs with acute and severe cauda equina constrictions following intrathecal injection of brain-derived neurotrophic factor-conjugated polymer nanoparticles 被引量:2
11
作者 Junming Tan Jiangang Shi +10 位作者 Guodong Shi Yanling Liu Xiaohong Liu Chaoyang Wang Dechun Chen Shunming Xing Lianbing Shen Lianshun Jia Xiaojian Ye Hailong He Jiashun Li 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第3期233-243,共11页
This study established a dog model of acute multiple cauda equina constriction by experimental constriction injury (48 hours) of the lumbosacral central processes in dorsal root ganglia neurons. The repair effect of... This study established a dog model of acute multiple cauda equina constriction by experimental constriction injury (48 hours) of the lumbosacral central processes in dorsal root ganglia neurons. The repair effect of intrathecal injection of brain-derived neurotrophic factor with 15 mg encapsulated biodegradable poly(lactide-co-glycolide) nanoparticles on this injury was then analyzed. Dorsal root ganglion cells (LT) of all experimental dogs were analyzed using hematoxylin-eosin staining and immunohistochemistry at 1,2 and 4 weeks following model induction. Intrathecal injection of brain-derived neurotrophic factor can relieve degeneration and inflammation, and elevate the expression of brain-derived neurotrophic factor in sensory neurons of compressed dorsal root ganglion Simultaneously, intrathecal injection of brain-derived neurotrophic factor obviously improved neurological function in the dog model of acute multiple cauda equina constriction. Results verified that sustained intraspinal delivery of brain-derived neurotrophic factor encapsulated in biodegradable nanoparticles promoted the repair of histomorphology and function of neurons within the dorsal root ganglia in dogs with acute and severe cauda equina syndrome. 展开更多
关键词 neural regeneration peripheral nerve injury cauda equina syndrome dorsal root ganglion brain-derived neurotrophic factor multiple cauda equina constrictions neurotrophic factors neuralprotection grants-supported paper photographs-containing paper NEUROREGENERATION
下载PDF
The brain-derived neurotrophic factor in neuronal plasticity and neuroregeneration: new pharmacological concepts for old and new drugs 被引量:7
12
作者 Solomon Habtemariam 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第6期983-984,共2页
Neurotrophins:Neurotrophins are peptides or proteins that are known to regulate neuronal viability,development,and function Beyond synaptic plasticity,neurotrophins protect neurons from apoptosis and also promote neu... Neurotrophins:Neurotrophins are peptides or proteins that are known to regulate neuronal viability,development,and function Beyond synaptic plasticity,neurotrophins protect neurons from apoptosis and also promote neurogenesis to recover neuronal defici even in adulthood. 展开更多
关键词 The brain-derived neurotrophic factor in neuronal plasticity and neuroregeneration new pharmacological concepts for old and new drugs
下载PDF
Human umbilical cord blood-derived stem cells and brain-derived neurotrophic factor protect injured optic nerve:viscoelasticity characterization 被引量:10
13
作者 Xue-man Lv Yan Liu +2 位作者 Fei Wu Yi Yuan Min Luo 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第4期652-656,共5页
The optic nerve is a viscoelastic solid-like biomaterial.Its normal stress relaxation and creep properties enable the nerve to resist constant strain and protect it from injury.We hypothesized that stress relaxation a... The optic nerve is a viscoelastic solid-like biomaterial.Its normal stress relaxation and creep properties enable the nerve to resist constant strain and protect it from injury.We hypothesized that stress relaxation and creep properties of the optic nerve change after injury.Moreover,human brain-derived neurotrophic factor or umbilical cord blood-derived stem cells may restore these changes to normal.To validate this hypothesis,a rabbit model of optic nerve injury was established using a clamp approach.At 7 days after injury,the vitreous body received a one-time injection of 50 μg human brain-derived neurotrophic factor or 1 × 106 human umbilical cord blood-derived stem cells.At 30 days after injury,stress relaxation and creep properties of the optic nerve that received treatment had recovered greatly,with pathological changes in the injured optic nerve also noticeably improved.These results suggest that human brain-derived neurotrophic factor or umbilical cord blood-derived stem cell intervention promotes viscoelasticity recovery of injured optic nerves,and thereby contributes to nerve recovery. 展开更多
关键词 nerve regeneration optic nerve injury human umbilical cord blood-derived stem cells brain-derived neurotrophic factors creep histomorphology stress relaxation viscoelasticity neural regeneration
下载PDF
Non-viral liposome-mediated transfer of brain-derived neurotrophic factor across the blood-brain barrier 被引量:8
14
作者 Ying Xing Chun-yan Wen +1 位作者 Song-tao Li Zong-xin Xia 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第4期617-622,共6页
Brain-derived neurotrophic factor(BDNF) plays an important role in the repair of central nervous system injury,but cannot directly traverse the blood-brain barrier.Liposomes are a new type of non-viral vector,able t... Brain-derived neurotrophic factor(BDNF) plays an important role in the repair of central nervous system injury,but cannot directly traverse the blood-brain barrier.Liposomes are a new type of non-viral vector,able to carry macromolecules across the blood-brain barrier and into the brain.Here,we investigate whether BDNF could be transported across the blood-brain barrier by tail-vein injection of liposomes conjugated to transferrin(Tf) and polyethylene glycol(PEG),and carrying BDNF modified with cytomegalovirus promoter(pC MV) or glial fibrillary acidic protein promoter(p GFAP)(Tf-p CMV-BDNF-PEG and Tf-p GFAP-BDNF-PEG,respectively).Both liposomes were able to traverse the blood-brain barrier,and BDNF was mainly expressed in the cerebral cortex.BDNF expression in the cerebral cortex was higher in the Tf-p GFAP-BDNF-PEG group than in the Tf-p CMV-BDNF-PEG group.This study demonstrates the successful construction of a non-virus targeted liposome,Tf-p GFAP-BDNF-PEG,which crosses the blood-brain barrier and is distributed in the cerebral cortex.Our work provides an experimental basis for BDNF-related targeted drug delivery in the brain. 展开更多
关键词 nerve regeneration brain injury brain-derived neurotrophic factor liposomes targeting vector transfection hippocampus cortex encapsulation efficiency blood-brain barrier transferrin glial fibrillary acidic protein polyethylene glycol neural regeneration
下载PDF
Exercise and exerkine upregulation:Brain-derived neurotrophic factor as a potential non-pharmacological therapeutic strategy for Parkinson’s disease
15
作者 VIRAAJ VISHNU PRASAD JENNIFER SALLY SAMSON VENKATACHALAM DEEPA PARVATHI 《BIOCELL》 SCIE 2024年第5期693-706,共14页
Physical activity and exercise have several beneficial roles in enhancing both physiological and psychological well-being of an individual.In addition to aiding the regulation of aerobic and anaerobic metabolism,exerc... Physical activity and exercise have several beneficial roles in enhancing both physiological and psychological well-being of an individual.In addition to aiding the regulation of aerobic and anaerobic metabolism,exercise can stimulate the synthesis of exerkine hormones in the circulatory system.Among several exerkines that have been investigated for their therapeutic potential,Brain-derived neurotrophic factor(BDNF)is considered the most promising candidate,especially in the management of neurodegenerative diseases.Owing to the ability of physical activity to enhance BDNF synthesis,several experimental studies conducted so far have validated this hypothesis and produced satisfactory results at the pre-clinical level.This review highlights some of the recent animal model studies that have evaluated the efficiency of exercise in enhancing BDNF synthesis and promoting neuroprotective effects.Further,this review focuses on understanding the therapeutic benefits of exercise-induced exerkine synthesis as a non-pharmacological strategy in Parkinson’s disease(PD).Regarding physical activity and exerkine induction,the neuromuscular electrical stimulation(NMES)strategy could be considered as an alternate treatment modality for patients affected with PD. 展开更多
关键词 Exercise therapy Dopaminergic neurons Parkinson’s disease brain-derived neurotrophic factor Electrical stimulation
下载PDF
Brain-derived neurotrophic factor signaling in the neuromuscular junction during developmental axonal competition and synapse elimination
16
作者 Josep Tomàs Víctor Cilleros-Mañé +7 位作者 Laia Just-Borràs Marta Balanyà-Segura Aleksandra Polishchuk Laura Nadal Marta Tomàs Carolina Silvera-Simón Manel M.Santafé Maria A.Lanuza 《Neural Regeneration Research》 SCIE CAS 2025年第2期394-401,共8页
During the development of the nervous system,there is an overproduction of neurons and synapses.Hebbian competition between neighboring nerve endings and synapses performing different activity levels leads to their el... During the development of the nervous system,there is an overproduction of neurons and synapses.Hebbian competition between neighboring nerve endings and synapses performing different activity levels leads to their elimination or strengthening.We have extensively studied the involvement of the brain-derived neurotrophic factor-Tropomyosin-related kinase B receptor neurotrophic retrograde pathway,at the neuromuscular junction,in the axonal development and synapse elimination process versus the synapse consolidation.The purpose of this review is to describe the neurotrophic influence on developmental synapse elimination,in relation to other molecular pathways that we and others have found to regulate this process.In particular,we summarize our published results based on transmitter release analysis and axonal counts to show the different involvement of the presynaptic acetylcholine muscarinic autoreceptors,coupled to downstream serine-threonine protein kinases A and C(PKA and PKC)and voltage-gated calcium channels,at different nerve endings in developmental competition.The dynamic changes that occur simultaneously in several nerve terminals and synapses converge across a postsynaptic site,influence each other,and require careful studies to individualize the mechanisms of specific endings.We describe an activity-dependent balance(related to the extent of transmitter release)between the presynaptic muscarinic subtypes and the neurotrophin-mediated TrkB/p75NTR pathways that can influence the timing and fate of the competitive interactions between the different axon terminals.The downstream displacement of the PKA/PKC activity ratio to lower values,both in competing nerve terminals and at postsynaptic sites,plays a relevant role in controlling the elimination of supernumerary synapses.Finally,calcium entry through L-and P/Q-subtypes of voltage-gated calcium channels(both channels are present,together with the N-type channel in developing nerve terminals)contributes to reduce transmitter release and promote withdrawal of the most unfavorable nerve terminals during elimination(the weakest in acetylcholine release and those that have already become silent).The main findings contribute to a better understanding of punishment-rewarding interactions between nerve endings during development.Identifying the molecular targets and signaling pathways that allow synapse consolidation or withdrawal of synapses in different situations is important for potential therapies in neurodegenerative diseases. 展开更多
关键词 acetylcholine release adenosine receptors axonal competition brain-derived neurotrophic factor calcium channels motor end-plate muscarinic acetylcholine receptors postnatal synapse elimination serine kinases tropomyosin-related kinase receptorB
下载PDF
EXPRESSING HUMAN MATURED BRAIN-DERIVED NEUROTROPHIC FACTOR GENE IN E.Coli AND DETERMINING ITS BIOACTIVITY 被引量:1
17
作者 马东亮 任惠民 +3 位作者 胡海涛 刘勇 杨广笑 王全颖 《Academic Journal of Xi'an Jiaotong University》 2001年第1期9-12,共4页
Objective Expressing the human matured brain-derived neurotrophic factor (mBDNF) gene in E. Coli and determining its bioactivity. Methods The resulting gene of mBDNF was subcloned into the EcoRI-BamHI site or the expr... Objective Expressing the human matured brain-derived neurotrophic factor (mBDNF) gene in E. Coli and determining its bioactivity. Methods The resulting gene of mBDNF was subcloned into the EcoRI-BamHI site or the expression vector plasmid pBV220. The ligation products were used to transform the competent E. Coli DH5a. The proteins or mBDNF were experessed by temperature inducing. The expression products were dealed with solubilizing inclusion bodies and refolding protein. It was introduced into the embryonic chicken DRG to test whether the expressed mBDNF is a biologically active protein. Results The recombinant plasmid pBV/mBDNF was success- fully constructed. By temperature inducing, under the control of the bacteriophage λPL promoter, the experessed mBDNF protein was a 14Kd non-fusion protein,which existed in E. Coli as inclusion bodies. The size or expressed mBDNF is identical to the prediction. Bioactivity of the products was proved that it could support the cell survival and neurite growth in the primary cultures of embryonic 8-day-old chicken DRG neurons as compared to control. Conclusion Tke mBDNF gene can be expressed bioactively in E. Coli. 展开更多
关键词 human matured brain-derived neurotrophic factor (mBDNF) molecular subcloning EXPRESSION bioactivity
下载PDF
Construction of a plasmid for human brain-derived neurotrophic factor and its effect on retinal pigment epithelial cell viability 被引量:2
18
作者 Bo-jing Yan Zhi-zhong Wu +1 位作者 Wei-hua Chong Gen-lin Li 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第12期1981-1989,共9页
Several studies have investigated the protective functions of brain-derived neurotrophic factor(BDNF) in retinitis pigmentosa. However, a BDNF-based therapy for retinitis pigmentosa is not yet available. To develop ... Several studies have investigated the protective functions of brain-derived neurotrophic factor(BDNF) in retinitis pigmentosa. However, a BDNF-based therapy for retinitis pigmentosa is not yet available. To develop an efficient treatment for fundus disease, an eukaryotic expression plasmid was generated and used to transfect human 293 T cells to assess the expression and bioactivity of BDNF on acute retinal pigment epithelial-19(ARPE-19) cells, a human retinal epithelial cell line. After 96 hours of co-culture in a Transwell chamber, ARPE-19 cells exposed to BDNF secreted by 293 T cells were more viable than ARPE-19 cells not exposed to secreted BDNF. Western blot assay showed that Bax levels were downregulated and that Bcl-2 levels were upregulated in human ARPE-19 cells exposed to BDNF. Furthermore, 293 T cells transfected with the BDNF gene steadily secreted the protein. The powerful anti-apoptotic function of this BDNF may be useful for the treatment of retinitis pigmentosa and other retinal degenerative diseases. 展开更多
关键词 nerve regeneration neurodegenerative disease brain-derived neurotrophic factor retinitis pigmentosa retina retinal pigment epithelium biosynthesis transfection plasmids green fluorescent protein apoptosis cell survival neural regeneration
下载PDF
When and how does brain-derived neurotrophic factor activate Nrf2 in astrocytes and neurons? 被引量:1
19
作者 Tetsuro Ishii Giovanni E.Mann 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第5期803-804,共2页
Circadian rhythm protects neurons:Although the master clock entrains the whole body rhythm,peripheral tissues also express core clock transcription factors Clock and Bmal1,which regulate expression of clock genes inc... Circadian rhythm protects neurons:Although the master clock entrains the whole body rhythm,peripheral tissues also express core clock transcription factors Clock and Bmal1,which regulate expression of clock genes including Period(Per)and Cryptochrome(Cry)proteins.Complexes of Per and Cry proteins repress Bmal1-and Clock-mediated transcription forming a negative feedback loop,which regulates nearly a 24 hours self-sustained rhythm including energy metabolism. 展开更多
关键词 When and how does brain-derived neurotrophic factor activate Nrf2 in astrocytes and neurons NGF
下载PDF
Synergistic effects of brain-derived neurotrophic factor and retinoic acid on inducing the differentiation of bone marrow stromal cells into neuron-like cells in adult rats in vitro
20
作者 Yonghai Liu Yucheng Song Zunsheng Zhang Xia Shen 《Neural Regeneration Research》 SCIE CAS CSCD 2006年第4期301-303,共3页
BACKGROUND: Under induction of retinoic acid (RA), bone marrow stromal cells (BMSCs) can differentiate into nerve cells or neuron-like cells, which do not survive for a long time, so those are restricted to an ap... BACKGROUND: Under induction of retinoic acid (RA), bone marrow stromal cells (BMSCs) can differentiate into nerve cells or neuron-like cells, which do not survive for a long time, so those are restricted to an application. Other neurotrophic factors can also differentiate into neuronal cells through inducing BMSCs; especially, brain-derived neurotrophic factor (BDNF) can delay natural death of neurons and play a key role in survival and growth of neurons. The combination of them is beneficial for differentiation of BMSCs. OBJECTIVE: To investigate the effects of BDNF combining with RA on inducing differentiation of BMSCs to nerve cells of adult rats and compare the results between common medium group and single BDNF group. DESIGN: Randomized controlled animal study SETTING: Department of Neurology, Affiliated Hospital of Xuzhou Medical College MATERIALS: The experiment was carried out in the Clinical Neurological Laboratory of Xuzhou Medical College from September 2003 to April 2005. A total of 24 SD rats, of either gender, 2 months old, weighing 130-150 g, were provided by Experimental Animal Center of Xuzhou Medical College [certification: SYXK (su) 2002-0038]. Materials and reagents: low-glucose DMEM medium, bovine serum, BDNF, RA, trypsin, separating medium of lymphocyte, monoclonal antibody of mouse-anti-nestin, neuro-specific enolase, glial fibrillary acidic protein (GFAP) antibody, SABC kit, and diaminobenzidine (DAB) color agent. All these mentioned above were mainly provided by SIGMA Company, GIBCO Company and Boshide Company. METHODS: Bone marrow of SD rats was selected for density gradient centrifugation. BMSCs were undertaken primary culture and subculture; and then, those cells were induced respectively in various mediums in total of 3 groups, including control group (primary culture), BDNF group (20 μg/L BDNF) and BDNF+RA group (20 μg/L BDNF plus 20 μg/L RA). On the 3^rd and the 7^th days after induction, BMSCs were stained immunocytochemically with nestin (sign of nerve stem cells), neuron-specific enolase (NSE, sign of diagnosing neurons) and GFAP (diagnosing astrocyte), and evaluated cellular property. MAIN OUTCOME MEASURES : Induction and differentiation in vitro of BMSCs in 3 groups RESULTS: (1) Induction and differentiation of BMSCs: Seven days after induction, cells having 2 or more apophyses were observed. Soma shaped like angle or erose form, which were similar to neurons and glial cells having strong refraction. (2) Results of immunocytochemical detection: Three days after induction, rate of positive cells in BDNF+RA group was higher than that in BDNF group and control group [(86.15±4.58)%, (65.43±4.23)%, (4.18±1.09)%, P 〈 0.01]. Seven days after induction, rate of positive cells was lower in BDNF group and BDNF+RA group than that in both groups at 3 days after induction [(31.12±3.18)%, (29.35±2.69)%, P 〈 0.01]; however, amounts of positive cells of NSE and GFAP were higher than those at 3 days after induction (P 〈 0.01); meanwhile, the amount in BDNF+RA group was remarkably higher than that in BDNF group (P 〈 0.01). CONCLUSION: Combination of BDNF and RA can cooperate differentiation of BMSCs into neurons and astrocyte, and the effect is superior to single usage of BDNF. 展开更多
关键词 cell bone Synergistic effects of brain-derived neurotrophic factor and retinoic acid on inducing the differentiation of bone marrow stromal cells into neuron-like cells in adult rats in vitro BMSCS BDNF acid
下载PDF
上一页 1 2 238 下一页 到第
使用帮助 返回顶部