期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Review of Global Ocean Intermediate Water Masses: 1.Part A, the Neutral Density Surface (the ‘McDougall Surface’) as a Study Frame for Water-Mass Analysis 被引量:2
1
作者 Yuzhu You 《Journal of Ocean University of China》 SCIE CAS 2006年第3期187-199,共13页
This review article commences with a comprehensive historical review of the evolution and application of various density surfaces in atmospheric and oceanic studies. The background provides a basis for the birth of th... This review article commences with a comprehensive historical review of the evolution and application of various density surfaces in atmospheric and oceanic studies. The background provides a basis for the birth of the neutral density idea. Attention is paid to the development of the neutral density surface concept from the nonlinearity of the equation of state of seawater. The definition and properties of neutral density surface are described in detail as developed from the equations of state of seawater and the buoyancy frequency when the squared buoyancy frequency N2 is zero, a neutral state of stability. In order to apply the neutral density surface to intermediate water-mass analysis, this review also describes in detail its practical oceanographic application. The mapping technique is focused for the first time on applying regularly gridded data in this review. It is reviewed how a backbone and ribs framework was designed to flesh out from a reference cast and first mapped the global neutral surfaces in the world’s oceans. Several mapped neutral density surfaces are presented as examples for each world ocean. The water-mass property is analyzed in each ocean at mid-depth. The characteristics of neutral density surfaces are compared with those of potential density surfaces. 展开更多
关键词 neutral density surface potential density surface equation of state of seawater McDougall surface watermass analysis global ocean mapping of neutral density surfaces
下载PDF
Mapping of an Approximate Neutral Density Surface with Ungridded Data 被引量:1
2
作者 YOU Yuzhu 《Journal of Ocean University of China》 SCIE CAS 2008年第1期1-9,共9页
A neutral density surface is a logical study frame for water-mass mixing since water parcels spread along such a surface without doing work against buoyancy restoring force. Mesoscale eddies are believed to stir and s... A neutral density surface is a logical study frame for water-mass mixing since water parcels spread along such a surface without doing work against buoyancy restoring force. Mesoscale eddies are believed to stir and subsequently mix predominantly along such surfaces. Because of the nonlinear nature of the equation of state of seawater, the process of accurately mapping a neutral density surface necessarily involves lateral computation from one conductivity, temperature and depth (CTD) cast to the next in a logical sequence. By contrast, the depth of a potential density surface on any CTD cast is found solely from the data on this cast. The lateral calculation procedure causes a significant inconvenience. In a previous paper by present author published in this journal (You, 2006), the mapping of neutral density surfaces with regularly gridded data such as Levitus data has been introduced. In this note, I present a new method to find the depth of a neutral density surface from a cast without having to specify an integration path in space. An appropriate reference point is required that is on the neutral density surface and thereafter the neutral density surface can be de- termined by using the CTD casts in any order. This method is only approximate and the likely errors can be estimated by plotting a scatter diagram of all the pressures and potential temperatures on the neutral density surfaces. The method assumes that the variations of potential temperature and pressure (with respect to the values at the reference point) on the neutral density surface are proportional. It is important to select the most appropriate reference point in order to approximately satisfy this assumption, and in practice this is found by inspecting the θ-p plot of data on the surface. This may require that the algorithm be used twice. When the straight lines on the θ-p plot, drawn from the reference point to other points on the neutral density surface, enclose an area that is external to the clus- ter of θ-p points of the neutral density surface, errors will occur, and these errors can be quantified from this diagram. Examples showing the use of the method are presented for each of the world’s main oceans. 展开更多
关键词 neutral density surface McDougall Surface mapping of a neutral density surface nonlinear equation of state of sea water ungridded data water-mass mixing world oceans
下载PDF
Adiabatic density surface,neutral density surface, potential density surface,and mixing path
3
作者 HUANG Rui-xin 《热带海洋学报》 CAS CSCD 北大核心 2014年第4期1-19,共19页
In this paper,adiabatic density surface,neutral density surface and potential density surface are compared.The adiabatic density surface is defined as the surface on which a water parcel can move adiabatically,without... In this paper,adiabatic density surface,neutral density surface and potential density surface are compared.The adiabatic density surface is defined as the surface on which a water parcel can move adiabatically,without changing its potential temperature and salinity.For a water parcel taken at a given station and pressure level,the corresponding adiabatic density surface can be determined through simple calculations.This family of surface is neutrally buoyant in the world ocean,and different from other surfaces that are not truly neutrally buoyant.In order to explore mixing path in the ocean,a mixing ratio m is introduced,which is defined as the portion of potential temperature and salinity of a water parcel that has exchanged with the environment during a segment of migration in the ocean.Two extreme situations of mixing path in the ocean are m=0(no mixing),which is represented by the adiabatic density curve,and m=1,where the original information is completely lost through mixing.The latter is represented by the neutral density curve.The reality lies in between,namely,0<m<1.In the turbulent ocean,there are potentially infinite mixing paths,some of which may be identified by using different tracers(or their combinations)and different mixing criteria.Searching for mixing paths in the real ocean presents a great challenge for further research. 展开更多
关键词 adiabatic density surface neutral density surface potential density surface mixing path
下载PDF
Estimation of Neutral Density in Edge Plasma with Double Null Configuration in EAST
4
作者 张凌 徐国盛 +10 位作者 丁斯晔 高伟 吴振伟 陈颖杰 黄娟 刘晓菊 臧庆 常加峰 张炜 李颖颖 钱金平 《Plasma Science and Technology》 SCIE EI CAS CSCD 2011年第4期431-434,共4页
In this work, population coefficients of hydrogen's n = 3 excited state from the hydrogen collisional-radiative (CR) model, from the data file of DEGAS 2, are used to calculate the photon emissivity coefficients (... In this work, population coefficients of hydrogen's n = 3 excited state from the hydrogen collisional-radiative (CR) model, from the data file of DEGAS 2, are used to calculate the photon emissivity coefficients (PECs) of hydrogen Balmer-α (n = 3 →n = 2) (Hα). The results are compared with the PECs from Atomic Data and Analysis Structure (ADAS) database, and a good agreement is found. A magnetic surface-averaged neutral density profile of typical double-null (DN) plasma in EAST is obtained by using FRANTIC, the 1.5-D fluid transport code. It is found that the sum of integral Dα and Hα emission intensity calculated via the neutral density agrees with the measured results obtained by using the absolutely calibrated multi-channel poloidal photodiode array systems viewing the lower divertor at the last closed flux surface (LCFS). It is revealed that the typical magnetic surface-averaged neutral density at LCFS is about 3.5×10^16 m^-3 . 展开更多
关键词 neutral density photon emissivity coefficients collisional-radiative (CR) model edge plasma
下载PDF
The Effect of IMF-Bz and F10.7 Solar Flux on Neutral Molecule Density of Ionospheric E-Region
5
作者 Ramazan Atici Serhat Korlaelci 《Journal of Physical Science and Application》 2017年第3期66-70,共5页
In this study, the relationship between the neutral components (N2 and 02) in the E-region of the ionosphere (at 110 km altitude) for the Singapore (01.23 N; 103.55 E) station in the equatorial region and the FI... In this study, the relationship between the neutral components (N2 and 02) in the E-region of the ionosphere (at 110 km altitude) for the Singapore (01.23 N; 103.55 E) station in the equatorial region and the FI0.7 solar flux and z-component of Interplanetary Magnetic Field (IMF-Bz) was investigated. This relationship was determined by means of statistical multiple regression model. As a result, it was observed that the changes in F10.7 solar flux and IMF-Bz were inversely proportional to the changes in N2 and 02. 92% and 83% of changes in N2 and O2 were found to be explained by F10.7 solar flux and IMF-Bz, respectively. When the F10.7 solar flux is changed by 1 s.f.u., it causes a decrease of 2.61×10TM m-3 in N2 and 2.96×1014 m-3 in O2. Change of I nT in IMF-Bz causes a decrease of 9.95× 1015 m-3 in N2 and 1.69× 1015 m-3 in O2. 展开更多
关键词 Dynamo region F10.7 solar flux IMF-Bz ionospheric-E-region neutral density.
下载PDF
Preliminarily study of Saturn’s upper atmosphere density by observing Cassini plunging via China’s deep space station 被引量:1
6
作者 Lue Chen Jin-Song Ping +10 位作者 Xiang Liu Na Wang Jian-Feng Cao Guang-Ming Chen Ming-Yuan Wang Wen-Xiao Li Jian-Hui Zhang Yong-Qiang Chen Shi-Lei Yue Song-Tao Han Jing Sun 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2020年第7期112-116,共5页
When the Cassini spacecraft finally plunged into the Saturnian atmosphere on 2017 September15,China’s deep space telescope pointed to Saturn to observe Cassini and study the Saturnian upper neutral atmosphere.In this... When the Cassini spacecraft finally plunged into the Saturnian atmosphere on 2017 September15,China’s deep space telescope pointed to Saturn to observe Cassini and study the Saturnian upper neutral atmosphere.In this first Chinese Saturnian radio science experiment,X band Doppler velocity radio science data between the deep space telescope and the Cassini spacecraft were obtained.After removing Saturnian and solar gravity effects,Earth rotation effect,the remaining Saturnian atmosphere drag information was retrieved in the Cassini final plunge progress.Saturn’s upper neutral atmosphere mass density profile is approximately estimated based on atmosphere mass density derived principally by real orbit measurement data.Saturn’s upper neutral atmosphere mass density from 76000 km to 1400 km is estimated from the orbit measurement data,the mass density results are about from 1.4×10^-15 kg cm^-3 to 2.5×10^-14 kg cm^-3. 展开更多
关键词 CASSINI SATURN Doppler velocity neutral atmosphere mass density
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部