Five ferruginous deposit samples formed from neutral hot springs were analyzed to determine whether they consisted of a mixture of silica, hydrous iron oxide or iron silicate by differential thermal analysis (DTA), in...Five ferruginous deposit samples formed from neutral hot springs were analyzed to determine whether they consisted of a mixture of silica, hydrous iron oxide or iron silicate by differential thermal analysis (DTA), infrared (IR) spectroscopy, powder X-ray diffraction (XRD), and 57Fe Mssbauer spectroscopy. The Si/Fe atomic ratios of the deposits ranged from 0.25 to 0.45, and were smaller than those of hisingerite (12), but apparently close to those of siliceous ferrihydrite (0.250.5). Si was confirmed to be present as monomeric or oligomeric silicate from the Si-O stretching vibration frequencies on the IR spectra. Judging from the results of DTA, which minerals starting to produce after heating, and a relationship between Si-O stretching vibration frequency and Si/Fe atomic ratio proposed by Henmi et al. (1981), all the deposits in this study were concluded to be mixtures of various siliceous ferri-hydrites with low and high Si/Fe atomic ratios. Moreover, by comparing the chemical properties of hot spring waters, the formation conditions of siliceous ferrihydrite were also discussed.展开更多
基金financially supported by the Interdisciplinary Programs in Education and the Projects in Research Development, Kyushu University
文摘Five ferruginous deposit samples formed from neutral hot springs were analyzed to determine whether they consisted of a mixture of silica, hydrous iron oxide or iron silicate by differential thermal analysis (DTA), infrared (IR) spectroscopy, powder X-ray diffraction (XRD), and 57Fe Mssbauer spectroscopy. The Si/Fe atomic ratios of the deposits ranged from 0.25 to 0.45, and were smaller than those of hisingerite (12), but apparently close to those of siliceous ferrihydrite (0.250.5). Si was confirmed to be present as monomeric or oligomeric silicate from the Si-O stretching vibration frequencies on the IR spectra. Judging from the results of DTA, which minerals starting to produce after heating, and a relationship between Si-O stretching vibration frequency and Si/Fe atomic ratio proposed by Henmi et al. (1981), all the deposits in this study were concluded to be mixtures of various siliceous ferri-hydrites with low and high Si/Fe atomic ratios. Moreover, by comparing the chemical properties of hot spring waters, the formation conditions of siliceous ferrihydrite were also discussed.