The problem of delay-dependent criteria for the robust stability of neutral systems with time-varying structured uncertainties and identi-cal neutral-delay and discrete-delay is concerned. A criterion for nominal syst...The problem of delay-dependent criteria for the robust stability of neutral systems with time-varying structured uncertainties and identi-cal neutral-delay and discrete-delay is concerned. A criterion for nominal systems is presented by taking the relationship between the terms in the Leibniz-Newton formula into account, which is described by some free-weighting matrices. In addition, this criterion is extended to robust stability of the systems with time-varying structured uncertainties. All of the criteria are based on linear matrix inequality such that it is easy to calculate the upper bound of the time-delay and the free-weighting matrices. Numerical examples illustrate the effectiveness and the improvement over the existing results.展开更多
This article concerns the delay-independent guaranteed-cost control problem via memoryless state feedback for a class of neutral-type systems with structural uncertainty and a given quadratic cost function. New delay-...This article concerns the delay-independent guaranteed-cost control problem via memoryless state feedback for a class of neutral-type systems with structural uncertainty and a given quadratic cost function. New delay-independent conditions for the existence of the guaranteed-cost controller are presented in the term of LMIs. An algorithm involving optimization is proposed to design a controller achieving an optimal guaranteed-cost, such that, the system can be stabilized for all admissible uncertainties. A numerical example is provided to illustrate the feasibility of the proposed method.展开更多
The delay-dependent robust stability of uncertain linear neutral systems with delays is investigated. Both discrete-delay-dependent/neutral-delay-independent and neutral-/discrete- delay-dependent stability criteria w...The delay-dependent robust stability of uncertain linear neutral systems with delays is investigated. Both discrete-delay-dependent/neutral-delay-independent and neutral-/discrete- delay-dependent stability criteria will be developed. The proposed stability criteria are formulated in the form of linear matrix inequalities and it is easy to check the robust stability of the considered systems. By introducing certain Lyapunov-Krasovskii functional the mathematical development of our result avoids model transformation and bounding for cross terms, which lead to conservatism. Finally, numerical example is given to indicate the improvement over some existing results.展开更多
In this paper, the dynamic observer-based controller design for a class of neutral systems with H∞ control is considered. An observer-based output feedback is derived for systems with polytopic parameter uncertaintie...In this paper, the dynamic observer-based controller design for a class of neutral systems with H∞ control is considered. An observer-based output feedback is derived for systems with polytopic parameter uncertainties. This controller assures delay-dependent stabilization and H∞ norm bound attenuation from the disturbance input to the controlled output. Numerical examples are provided for illustration and comparison of the proposed conditions.展开更多
This paper investigates the problem of robust exponential stability for neutral systems with time-varying delays and nonlinear perturbations. Based on a novel Lyapunov functional approach and linear matrix inequality ...This paper investigates the problem of robust exponential stability for neutral systems with time-varying delays and nonlinear perturbations. Based on a novel Lyapunov functional approach and linear matrix inequality technique, a new delay-dependent stability condition is derived. Since the model transformation and bounding techniques for cross terms are avoided, the criteria proposed in this paper are less conservative than some previous approaches by using the free-weighting matrices. One numerical example is presented to illustrate the effectiveness of the proposed results.展开更多
This paper focuses on sliding mode control problems for a class of nonlinear neutral systems with time-varying delays. An integral sliding surface is firstly constructed. Then it finds a useful criteria to guarantee t...This paper focuses on sliding mode control problems for a class of nonlinear neutral systems with time-varying delays. An integral sliding surface is firstly constructed. Then it finds a useful criteria to guarantee the global stability for the nonlinear neutral systems with time-varying delays in the specified switching surface, whose condition is formulated as linear matrix inequality. The synthesized sliding mode controller guarantees the reachability of the specified sliding surface. Finally, a numerical simulation validates the effectiveness and feas.ibility of the proposed technique.展开更多
This article is concerned with the problem of robust dissipative filtering for continuous-time polytopic uncertain neutral systems. The main purpose is to obtain a stable and proper linear filter such that the filteri...This article is concerned with the problem of robust dissipative filtering for continuous-time polytopic uncertain neutral systems. The main purpose is to obtain a stable and proper linear filter such that the filtering error system is strictly dissipative. A new criterion for the dissipativity of neutral systems is first provided in terms of linear matrix inequalities (LMI). Then, an LMI sufficient condition for the existence of a robust filter is established and a design procedure is proposed for this type of systems. Two numerical examples are given. One illustrates the less conservativeness of the proposed criterion; the other demonstrates the validity of the filtering design procedure.展开更多
This paper focuses on the design problem of a memoryless state feedback robust H-infinity controller for a class of uncertain neutral systems. By using a newly established integral inequality, a new delay-dependent bo...This paper focuses on the design problem of a memoryless state feedback robust H-infinity controller for a class of uncertain neutral systems. By using a newly established integral inequality, a new delay-dependent bounded real lemma for such systems is derived without involving a fixed model transformation. Furthermore, new delay-dependent sufficient conditions for the existence of robust H-infinity controllers are presented in terms of nonlinear matrix inequalities. A design procedure involving an iterative algorithm is also proposed to design such controllers. Numerical examples are given to demonstrate the less conservatism of the proposed method.展开更多
The robust stability of uncertain neutral systems with mixed time-varying delays is investigated in this paper. The uncertainties under consideration are norm-bounded and time-varying. Based on the Lyapunov stability ...The robust stability of uncertain neutral systems with mixed time-varying delays is investigated in this paper. The uncertainties under consideration are norm-bounded and time-varying. Based on the Lyapunov stability theory, a delay-dependent stability criterion is derived and given in the form of a linear matrix inequality (LMI). Finally, a numerical example is given to illustrate significant improvement over some existing results.展开更多
This note concerns the problem of the robust stability of uncertain neutral systems with time-varying delay and saturating actuators. The system considered is continuous in time with norm bounded parametric uncertaint...This note concerns the problem of the robust stability of uncertain neutral systems with time-varying delay and saturating actuators. The system considered is continuous in time with norm bounded parametric uncertainties. By incorporating the free weighing matrix approach developed recently, some new delay-dependent stability conditions in terms of linear matrix inequalities (LMIs) with some tuning parameters are obtained. An estimate of the domain of attraction of the closed-loop system under a priori designed controller is proposed. The approach is based on a polytopic description of the actuator saturation nonlinearities and the Lyapunov- Krasovskii method. Numerical examples are used to demonstrate the effectiveness of the proposed design method.展开更多
The problem of guaranteed cost fuzzy controller is studied for a class of nonlinear time-delay neutral sys-tems with norm-bounded uncertainty based on T-S model. The sufficient conditions are first derived for the exi...The problem of guaranteed cost fuzzy controller is studied for a class of nonlinear time-delay neutral sys-tems with norm-bounded uncertainty based on T-S model. The sufficient conditions are first derived for the existenceof guaranteed cost fuzzy controllers. These sufficient conditions are equivalent to a kind of linear matrix inequalities.Furthermore, a convex optimization problem with LMI constraints is formulated to design the optimal guaranteedcost controller.展开更多
This paper focuses on the problem of delay-dependent robust stability of neutral systems with different discrete-and-neutral delays and time-varying structured uncertainties. Some new criteria are presented, in which ...This paper focuses on the problem of delay-dependent robust stability of neutral systems with different discrete-and-neutral delays and time-varying structured uncertainties. Some new criteria are presented, in which some free weighting matrices are used to express the relationships between the terms in the Leibniz-Newton formula. The criteria include the information on the size of both neutral-and-discrete delays. It is shown that the present results also include the results for identical discrete-and-neutral delays as special cases. A numerical example illustrates the improvement of the proposed methods over the previous methods and the influences between the discrete and neutral delays.展开更多
The stabilization of a class of neutral systems with multiple time-delays is considered. To stabilize the neutral system with nonlinear uncertainty, a state feedback control law via compound memory and memoryless feed...The stabilization of a class of neutral systems with multiple time-delays is considered. To stabilize the neutral system with nonlinear uncertainty, a state feedback control law via compound memory and memoryless feedback is derived, by constructed Lyapunov functional, delay-independent stability criteria are proposed that are sufficient to ensure a uniform asymptotic stability property. Finally, two concise examples are provided to illustrate the feasibility of our results.展开更多
This paper investigates the problem of delay-dependent robust stability analysis for a class of neutral systems with interval time-varying delays and nonlinear perturbations. Such nonlinear perturbations are with time...This paper investigates the problem of delay-dependent robust stability analysis for a class of neutral systems with interval time-varying delays and nonlinear perturbations. Such nonlinear perturbations are with time-varying but norm-bounded characteristics. Based on a new Lyapunov-Krasovskii functional, together ,sith a free-weighting matrices technique, improved delay-dependent stability criteria are established. It is shown that less conservative results can be obtained in terms of linear matrix inequalities (LMIs). Numerical examples are provided to demonstrate the effectiveness and less conservatism of the proposed approach.展开更多
This paper is concerned with the issue of stabilization for the linear neutral systems with mixed delays. The attention is focused on the design of output feedback controllers which guarantee the asymptotical stabilit...This paper is concerned with the issue of stabilization for the linear neutral systems with mixed delays. The attention is focused on the design of output feedback controllers which guarantee the asymptotical stability of the closed-loop systems. Based on the model transformation of neutral type, the Lyapunov-Krasovskii functional method is employed to establish the delay-dependent stability criterion. Then, through the controller parameterization and some matrix transformation techniques, the desired parameters are determined under the delay-dependent design condition in terms of linear matrix inequalities (LMIs), and the desired controller is explicitly formulated. A numerical example is given to illustrate the effectiveness of the proposed method.展开更多
This paper concerns problem of the delay-dependent robust stability and stabilizationfor uncertain neutral systems. Some new delay-dependent stability criteria are derived by takingthe relationship between the terms i...This paper concerns problem of the delay-dependent robust stability and stabilizationfor uncertain neutral systems. Some new delay-dependent stability criteria are derived by takingthe relationship between the terms in the Leibniz-Newton formula into account. Free weightingmatrices are given to express the relationship between the terms in the Leibniz-Newton formula andthe new criteria are based on linear matrix inequalities such that the free weighting matrices can beeasily obtained. Moreover, the stability criteria are also used to design the state-feedback controller.Numerical examples demonstrates that the proposed criteria are e?ective and are an improvementover the previous papers.展开更多
This note deals with the problem of stabilization/stability for neutral systems with nonlinear perturbations. A new stabilization/stability scheme is presented. Using improved Lyapunov functionals, less conservative s...This note deals with the problem of stabilization/stability for neutral systems with nonlinear perturbations. A new stabilization/stability scheme is presented. Using improved Lyapunov functionals, less conservative stabilization/stability conditions are derived for such systems based on linear matrix inequalities (LMI). Numerical examples are provided to show that the proposed results significantly improve the allowed upper bounds of the delay size over some existing ones in the literature.展开更多
Super oil and gas basins provide the energy foundation for social progress and human development.In the context of climate change and carbon peak and carbon neutrality goals,constructing an integrated energy and carbo...Super oil and gas basins provide the energy foundation for social progress and human development.In the context of climate change and carbon peak and carbon neutrality goals,constructing an integrated energy and carbon neutrality system that balances energy production and carbon reduction becomes crucial for the transformation of such basins.Under the framework of a green and intelligent energy system primarily based on“four news”,new energy,new electricity,new energy storage,and new intelligence,integrating a“super energy system”composed of a huge amount of underground resources of coal,oil,gas and heat highly overlapping with abundant wind and solar energy resources above ground,and a regional intelligent energy consumption system with coordinated development and utilization of fossil energy and new energy,with a carbon neutrality system centered around carbon cycling is essential.This paper aims to select the traditional oil and gas basins as“super energy basins”with the conditions to build world-class energy production and demonstration bases for carbon neutrality.The Ordos Basin has unique regional advantages,including abundant fossil fuel and new energy resources,as well as matching CO_(2)sources and sinks,position it as a carbon neutrality“super energy basin”which explores the path of transformation of traditional oil and gas basins.Under the integrated development concept and mode of“coal+oil+gas+new energy+carbon capture,utilization and storage(CCUS)/carbon capture and storage(CCS)”,the carbon neutrality in super energy basin is basically achieved,which enhance energy supply and contribute to the carbon peak and carbon neutrality goals,establish a modern energy industry and promote regional green and sustainable development.The pioneering construction of the world-class carbon neutrality“super energy system”demonstration basin in China represented by the Ordos Basin will reshape the new concept and new mode of exploration and development of super energy basins,which is of great significance to the global energy revolution under carbon neutrality.展开更多
文摘The problem of delay-dependent criteria for the robust stability of neutral systems with time-varying structured uncertainties and identi-cal neutral-delay and discrete-delay is concerned. A criterion for nominal systems is presented by taking the relationship between the terms in the Leibniz-Newton formula into account, which is described by some free-weighting matrices. In addition, this criterion is extended to robust stability of the systems with time-varying structured uncertainties. All of the criteria are based on linear matrix inequality such that it is easy to calculate the upper bound of the time-delay and the free-weighting matrices. Numerical examples illustrate the effectiveness and the improvement over the existing results.
基金This project was supported by the Natural Science Basic Research Plan in Shaanxi Province of China (2006A13)the Foundation of Research Project of Educational Department of Shaanxi Province (06JK149).
文摘This article concerns the delay-independent guaranteed-cost control problem via memoryless state feedback for a class of neutral-type systems with structural uncertainty and a given quadratic cost function. New delay-independent conditions for the existence of the guaranteed-cost controller are presented in the term of LMIs. An algorithm involving optimization is proposed to design a controller achieving an optimal guaranteed-cost, such that, the system can be stabilized for all admissible uncertainties. A numerical example is provided to illustrate the feasibility of the proposed method.
基金This work was supported by the National Natural Science Foundation of China(No. 60473120).
文摘The delay-dependent robust stability of uncertain linear neutral systems with delays is investigated. Both discrete-delay-dependent/neutral-delay-independent and neutral-/discrete- delay-dependent stability criteria will be developed. The proposed stability criteria are formulated in the form of linear matrix inequalities and it is easy to check the robust stability of the considered systems. By introducing certain Lyapunov-Krasovskii functional the mathematical development of our result avoids model transformation and bounding for cross terms, which lead to conservatism. Finally, numerical example is given to indicate the improvement over some existing results.
文摘In this paper, the dynamic observer-based controller design for a class of neutral systems with H∞ control is considered. An observer-based output feedback is derived for systems with polytopic parameter uncertainties. This controller assures delay-dependent stabilization and H∞ norm bound attenuation from the disturbance input to the controlled output. Numerical examples are provided for illustration and comparison of the proposed conditions.
基金supported by Natural Science Foundation of Jiangsu Province of China(No.BK2007016)Scientific Research and Development Program of the Higher Education Institutions of Shandong Province of China(No.J09LG58)
文摘This paper investigates the problem of robust exponential stability for neutral systems with time-varying delays and nonlinear perturbations. Based on a novel Lyapunov functional approach and linear matrix inequality technique, a new delay-dependent stability condition is derived. Since the model transformation and bounding techniques for cross terms are avoided, the criteria proposed in this paper are less conservative than some previous approaches by using the free-weighting matrices. One numerical example is presented to illustrate the effectiveness of the proposed results.
基金Project supported by the National Natural Science Foundation of China (Grant No 60674026)the Key Project of Chinese Ministry of Education (Grant No 107058)+1 种基金the Jiangsu Provincial Natural Science Foundation of China (Grant No BK2007016)the Jiangsu Provincial Program for Postgraduate Scientific Innovative Research of Jiangnan University (Grant No CX07B_116z)and PIRT Jiangnan
文摘This paper focuses on sliding mode control problems for a class of nonlinear neutral systems with time-varying delays. An integral sliding surface is firstly constructed. Then it finds a useful criteria to guarantee the global stability for the nonlinear neutral systems with time-varying delays in the specified switching surface, whose condition is formulated as linear matrix inequality. The synthesized sliding mode controller guarantees the reachability of the specified sliding surface. Finally, a numerical simulation validates the effectiveness and feas.ibility of the proposed technique.
基金supported by the Major Program of National Natural Science Foundation of China(60710002)the Program for Changjiang Scholars and Innovative Research Team in University.
文摘This article is concerned with the problem of robust dissipative filtering for continuous-time polytopic uncertain neutral systems. The main purpose is to obtain a stable and proper linear filter such that the filtering error system is strictly dissipative. A new criterion for the dissipativity of neutral systems is first provided in terms of linear matrix inequalities (LMI). Then, an LMI sufficient condition for the existence of a robust filter is established and a design procedure is proposed for this type of systems. Two numerical examples are given. One illustrates the less conservativeness of the proposed criterion; the other demonstrates the validity of the filtering design procedure.
基金the National Natural Science Foundation of China (No. 60525304)
文摘This paper focuses on the design problem of a memoryless state feedback robust H-infinity controller for a class of uncertain neutral systems. By using a newly established integral inequality, a new delay-dependent bounded real lemma for such systems is derived without involving a fixed model transformation. Furthermore, new delay-dependent sufficient conditions for the existence of robust H-infinity controllers are presented in terms of nonlinear matrix inequalities. A design procedure involving an iterative algorithm is also proposed to design such controllers. Numerical examples are given to demonstrate the less conservatism of the proposed method.
文摘The robust stability of uncertain neutral systems with mixed time-varying delays is investigated in this paper. The uncertainties under consideration are norm-bounded and time-varying. Based on the Lyapunov stability theory, a delay-dependent stability criterion is derived and given in the form of a linear matrix inequality (LMI). Finally, a numerical example is given to illustrate significant improvement over some existing results.
文摘This note concerns the problem of the robust stability of uncertain neutral systems with time-varying delay and saturating actuators. The system considered is continuous in time with norm bounded parametric uncertainties. By incorporating the free weighing matrix approach developed recently, some new delay-dependent stability conditions in terms of linear matrix inequalities (LMIs) with some tuning parameters are obtained. An estimate of the domain of attraction of the closed-loop system under a priori designed controller is proposed. The approach is based on a polytopic description of the actuator saturation nonlinearities and the Lyapunov- Krasovskii method. Numerical examples are used to demonstrate the effectiveness of the proposed design method.
文摘The problem of guaranteed cost fuzzy controller is studied for a class of nonlinear time-delay neutral sys-tems with norm-bounded uncertainty based on T-S model. The sufficient conditions are first derived for the existenceof guaranteed cost fuzzy controllers. These sufficient conditions are equivalent to a kind of linear matrix inequalities.Furthermore, a convex optimization problem with LMI constraints is formulated to design the optimal guaranteedcost controller.
文摘This paper focuses on the problem of delay-dependent robust stability of neutral systems with different discrete-and-neutral delays and time-varying structured uncertainties. Some new criteria are presented, in which some free weighting matrices are used to express the relationships between the terms in the Leibniz-Newton formula. The criteria include the information on the size of both neutral-and-discrete delays. It is shown that the present results also include the results for identical discrete-and-neutral delays as special cases. A numerical example illustrates the improvement of the proposed methods over the previous methods and the influences between the discrete and neutral delays.
基金Supported by the Foundation of the National Key Development Plan on Foundational Study(G1998030417) Supported by the Shaanxi Provincial Department of Education(06JK149)
文摘The stabilization of a class of neutral systems with multiple time-delays is considered. To stabilize the neutral system with nonlinear uncertainty, a state feedback control law via compound memory and memoryless feedback is derived, by constructed Lyapunov functional, delay-independent stability criteria are proposed that are sufficient to ensure a uniform asymptotic stability property. Finally, two concise examples are provided to illustrate the feasibility of our results.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61004038)
文摘This paper investigates the problem of delay-dependent robust stability analysis for a class of neutral systems with interval time-varying delays and nonlinear perturbations. Such nonlinear perturbations are with time-varying but norm-bounded characteristics. Based on a new Lyapunov-Krasovskii functional, together ,sith a free-weighting matrices technique, improved delay-dependent stability criteria are established. It is shown that less conservative results can be obtained in terms of linear matrix inequalities (LMIs). Numerical examples are provided to demonstrate the effectiveness and less conservatism of the proposed approach.
基金the National Natural Science Foundation of China (No. 50708094)the Hi-Tech Research and Development Program (863) of China (No. 2007AA11Z216)
文摘This paper is concerned with the issue of stabilization for the linear neutral systems with mixed delays. The attention is focused on the design of output feedback controllers which guarantee the asymptotical stability of the closed-loop systems. Based on the model transformation of neutral type, the Lyapunov-Krasovskii functional method is employed to establish the delay-dependent stability criterion. Then, through the controller parameterization and some matrix transformation techniques, the desired parameters are determined under the delay-dependent design condition in terms of linear matrix inequalities (LMIs), and the desired controller is explicitly formulated. A numerical example is given to illustrate the effectiveness of the proposed method.
文摘This paper concerns problem of the delay-dependent robust stability and stabilizationfor uncertain neutral systems. Some new delay-dependent stability criteria are derived by takingthe relationship between the terms in the Leibniz-Newton formula into account. Free weightingmatrices are given to express the relationship between the terms in the Leibniz-Newton formula andthe new criteria are based on linear matrix inequalities such that the free weighting matrices can beeasily obtained. Moreover, the stability criteria are also used to design the state-feedback controller.Numerical examples demonstrates that the proposed criteria are e?ective and are an improvementover the previous papers.
基金This work was supported by the National Natural Science Foundation of China(No.10571036).
文摘This note deals with the problem of stabilization/stability for neutral systems with nonlinear perturbations. A new stabilization/stability scheme is presented. Using improved Lyapunov functionals, less conservative stabilization/stability conditions are derived for such systems based on linear matrix inequalities (LMI). Numerical examples are provided to show that the proposed results significantly improve the allowed upper bounds of the delay size over some existing ones in the literature.
基金Supported by the National Natural Science Foundation of China(42072187)PetroChina Science and Technology Special Project(2021ZZ01-05)。
文摘Super oil and gas basins provide the energy foundation for social progress and human development.In the context of climate change and carbon peak and carbon neutrality goals,constructing an integrated energy and carbon neutrality system that balances energy production and carbon reduction becomes crucial for the transformation of such basins.Under the framework of a green and intelligent energy system primarily based on“four news”,new energy,new electricity,new energy storage,and new intelligence,integrating a“super energy system”composed of a huge amount of underground resources of coal,oil,gas and heat highly overlapping with abundant wind and solar energy resources above ground,and a regional intelligent energy consumption system with coordinated development and utilization of fossil energy and new energy,with a carbon neutrality system centered around carbon cycling is essential.This paper aims to select the traditional oil and gas basins as“super energy basins”with the conditions to build world-class energy production and demonstration bases for carbon neutrality.The Ordos Basin has unique regional advantages,including abundant fossil fuel and new energy resources,as well as matching CO_(2)sources and sinks,position it as a carbon neutrality“super energy basin”which explores the path of transformation of traditional oil and gas basins.Under the integrated development concept and mode of“coal+oil+gas+new energy+carbon capture,utilization and storage(CCUS)/carbon capture and storage(CCS)”,the carbon neutrality in super energy basin is basically achieved,which enhance energy supply and contribute to the carbon peak and carbon neutrality goals,establish a modern energy industry and promote regional green and sustainable development.The pioneering construction of the world-class carbon neutrality“super energy system”demonstration basin in China represented by the Ordos Basin will reshape the new concept and new mode of exploration and development of super energy basins,which is of great significance to the global energy revolution under carbon neutrality.