Capacitor voltage imbalance is a significant problem for three-level inverters.Due to the mid-point modulation of these inverter topologies,the neutral point potential moves up or down depending on the neutral point c...Capacitor voltage imbalance is a significant problem for three-level inverters.Due to the mid-point modulation of these inverter topologies,the neutral point potential moves up or down depending on the neutral point current direction creating imbalanced voltages among the two capacitors.This imbalanced capacitor voltage causes imbalanced voltage stress among the semiconductor devices and causes increase output voltage and current harmonics.This paper introduces a modified voltage balancing strategy using two-level space vector modulation.By decomposing the three-level space vector diagram into two-level space vector diagram and redistributing the dwell times of the two-level zero space vectors,the modified voltage balancing method ensures minimal NP voltage ripple.Compared to the commonly used NP voltage control method(using 3L SVM[9]),the proposed modified NP voltage control method offers a slightly higher neutral-point voltage ripple and output voltage harmonics but,it has much lower switching loss,code size and execution time.展开更多
The topology of diode neutral-point-clamped(NPC)three-level inverter is prone to neutral-point potential offset.When the sum of three-phase current is zero,the virtual space vector pulse width modulation(VSVPWM)scheme...The topology of diode neutral-point-clamped(NPC)three-level inverter is prone to neutral-point potential offset.When the sum of three-phase current is zero,the virtual space vector pulse width modulation(VSVPWM)scheme does not cause the neutral-point voltage offset,but it lacks the ability to balance the deviation.For this reason,a neutral-point potential control strategy combining virtual space vector modulation and loop width control is proposed.The neutral-point potential is balanced by introducing the distribution factor for the regions with redundant vectors.For other regions,the potential is controlled by selecting a suitable switching sequence.Meanwhile,the effect on the virtual vector modulation is reduced within the loop width by setting an appropriate loop width,thereby improving the balance effect.The simulation results show that the proposed method has a strong ability to control the offset and has excellent potential balance performance under the conditions of balanced load,unbalanced load and asymmetric capacitance parameters.展开更多
The output current harmonic distortion of a three-level inverter is less than the traditional twolevel inverter.The voltage stress of the semiconductor switch is low.A neutral point potential drift control method is p...The output current harmonic distortion of a three-level inverter is less than the traditional twolevel inverter.The voltage stress of the semiconductor switch is low.A neutral point potential drift control method is proposed to solve the problem of the neutral point potential drift of the three-level inverter.The interaction mechanism between the neutral point potential and the space voltage vector is presented.The small vector output by the inverter is found to be the root cause of the midpoint potential drift.It is found that the fluctuation of the midpoint potential could be suppressed by increasing the capacitance value of the inverter bus voltage stabilizing capacitor.Furthermore,it inhibits the fluctuation of the midpoint potential.The experimental results verify the efficiency and precision of the proposed method.展开更多
A new modulation approach was presented for the control of neutral-point (NP) voltage variation in the three-level NP-clamped voltage source inverter, and the average NP current model was established based on vector...A new modulation approach was presented for the control of neutral-point (NP) voltage variation in the three-level NP-clamped voltage source inverter, and the average NP current model was established based on vector diagram partition. Thus, theory base was built for balancing control of NP potential. Theoretical analysis and experimental results indicate that the proposed method for NP balancing control vector synthe- sizing concept based can make the average NP current zero, and do not influence NP potential within every sample period. The effectiveness of proposed research approach was verified by simulative and experimental results.展开更多
This paper presents a novel and efficient control scheme for unified power quality conditioner (UPQC) based on three-level neutral point clamped (NPC) inverter using fuzzy logic techniques. The proposed UPQC is ca...This paper presents a novel and efficient control scheme for unified power quality conditioner (UPQC) based on three-level neutral point clamped (NPC) inverter using fuzzy logic techniques. The proposed UPQC is capable of mitigating source current harmonics and compensate all voltage disturbances such as voltage sags, swells, unbalances and harmonics. It is designed by the integration of series and shunt active filters (AFs) sharing a common DC bus capacitor. The DC voltage is maintained constant using proportional integral voltage controller. The synchronous reference frame (SRF) theory is used to get the reference signals for shunt active power filters (APFs) and the power reactive theory (p-q theory) for series APFs. The shunt and series APF reference signals derived from the control algorithm and sensed signals are injected in two controllers to generate switching signals. To improve the UPQC capability, fuzzy logic techniques are introduced to control the series APF. The performances of the proposed UPQC system are evaluated in terms of power factor correction, mitigation of voltage or current harmonics and all other voltage disturbances compensation using Matlab-Simulink software and SimPowerSystem toolbox. The simulation results illustrate the performance of the proposed UPQC at the common connection point of the nonlinear load to improve the power energy quality.展开更多
In order to improve maximum power point tracking(MPPT) performance, a variable and adaptive perturb and observe(P&O)method with current predictive control is proposed. This is applied in three-phase threelevel neu...In order to improve maximum power point tracking(MPPT) performance, a variable and adaptive perturb and observe(P&O)method with current predictive control is proposed. This is applied in three-phase threelevel neutral-point clamped(NPC) photovoltaic(PV)generation systems. To control the active power and the reactive power independently,the decoupled power control combined with a space vector modulation block is adopted for three-phase NPC inverters in PV generation systems.To balance the neutral-point voltage of the three-phase NPC grid-connected inverter, a proportional and integral control is used by adj usting the dwell time of small voltage vectors. A three-phase NPC inverter rated at 12 kVA was established. The performance of the proposed method was tested and compared with the fixed perturbation MPPT algorithm under different conditions. Experimental results confirm the feasibility and advantages of the proposed method.展开更多
Open-end winding motors are used extensively in ship electric propulsion systems,in which medium-voltage high-power inverters are a critical component.To increase the system voltage and power density,a dual five-level...Open-end winding motors are used extensively in ship electric propulsion systems,in which medium-voltage high-power inverters are a critical component.To increase the system voltage and power density,a dual five-level active neutral-point clamped(ANPC)inverter is proposed herein to drive medium-voltage open-end winding motors for ship electric propulsion.Each phase of this inverter comprises two five-level ANPC bridges and all the phases are powered by a common direct-current link.A hybrid modulation method is proposed to control this inverter.The series-connected switches in all the five-level ANPC bridges are operated at the fundamental frequency,and the other switches are controlled with a phase-shifted pulse-width modulation(PWM),which can achieve a natural balance between the neutral-point voltage and flying capacitor voltages in a carrier period.A closed-loop capacitor voltage balancing method based on adjusting the duty ratios of the PWM signals is proposed.The neutral-point voltage and flying capacitor voltages can be controlled independently and balanced without affecting the output phase voltage.Simulation and experimental results are presented to demonstrate the validity of this method.展开更多
文摘Capacitor voltage imbalance is a significant problem for three-level inverters.Due to the mid-point modulation of these inverter topologies,the neutral point potential moves up or down depending on the neutral point current direction creating imbalanced voltages among the two capacitors.This imbalanced capacitor voltage causes imbalanced voltage stress among the semiconductor devices and causes increase output voltage and current harmonics.This paper introduces a modified voltage balancing strategy using two-level space vector modulation.By decomposing the three-level space vector diagram into two-level space vector diagram and redistributing the dwell times of the two-level zero space vectors,the modified voltage balancing method ensures minimal NP voltage ripple.Compared to the commonly used NP voltage control method(using 3L SVM[9]),the proposed modified NP voltage control method offers a slightly higher neutral-point voltage ripple and output voltage harmonics but,it has much lower switching loss,code size and execution time.
基金National Natural Science Foundation of China(No.61761027)Postgraduate Education Reform Project of Lanzhou Jiaotong University(No.1600120101)
文摘The topology of diode neutral-point-clamped(NPC)three-level inverter is prone to neutral-point potential offset.When the sum of three-phase current is zero,the virtual space vector pulse width modulation(VSVPWM)scheme does not cause the neutral-point voltage offset,but it lacks the ability to balance the deviation.For this reason,a neutral-point potential control strategy combining virtual space vector modulation and loop width control is proposed.The neutral-point potential is balanced by introducing the distribution factor for the regions with redundant vectors.For other regions,the potential is controlled by selecting a suitable switching sequence.Meanwhile,the effect on the virtual vector modulation is reduced within the loop width by setting an appropriate loop width,thereby improving the balance effect.The simulation results show that the proposed method has a strong ability to control the offset and has excellent potential balance performance under the conditions of balanced load,unbalanced load and asymmetric capacitance parameters.
基金the National Natural Science Foundation of China(No.51407007)。
文摘The output current harmonic distortion of a three-level inverter is less than the traditional twolevel inverter.The voltage stress of the semiconductor switch is low.A neutral point potential drift control method is proposed to solve the problem of the neutral point potential drift of the three-level inverter.The interaction mechanism between the neutral point potential and the space voltage vector is presented.The small vector output by the inverter is found to be the root cause of the midpoint potential drift.It is found that the fluctuation of the midpoint potential could be suppressed by increasing the capacitance value of the inverter bus voltage stabilizing capacitor.Furthermore,it inhibits the fluctuation of the midpoint potential.The experimental results verify the efficiency and precision of the proposed method.
文摘A new modulation approach was presented for the control of neutral-point (NP) voltage variation in the three-level NP-clamped voltage source inverter, and the average NP current model was established based on vector diagram partition. Thus, theory base was built for balancing control of NP potential. Theoretical analysis and experimental results indicate that the proposed method for NP balancing control vector synthe- sizing concept based can make the average NP current zero, and do not influence NP potential within every sample period. The effectiveness of proposed research approach was verified by simulative and experimental results.
文摘This paper presents a novel and efficient control scheme for unified power quality conditioner (UPQC) based on three-level neutral point clamped (NPC) inverter using fuzzy logic techniques. The proposed UPQC is capable of mitigating source current harmonics and compensate all voltage disturbances such as voltage sags, swells, unbalances and harmonics. It is designed by the integration of series and shunt active filters (AFs) sharing a common DC bus capacitor. The DC voltage is maintained constant using proportional integral voltage controller. The synchronous reference frame (SRF) theory is used to get the reference signals for shunt active power filters (APFs) and the power reactive theory (p-q theory) for series APFs. The shunt and series APF reference signals derived from the control algorithm and sensed signals are injected in two controllers to generate switching signals. To improve the UPQC capability, fuzzy logic techniques are introduced to control the series APF. The performances of the proposed UPQC system are evaluated in terms of power factor correction, mitigation of voltage or current harmonics and all other voltage disturbances compensation using Matlab-Simulink software and SimPowerSystem toolbox. The simulation results illustrate the performance of the proposed UPQC at the common connection point of the nonlinear load to improve the power energy quality.
基金supported in part by the National Young Natural Science Foundation of China (No. 51407124)in part by China Postdoctoral Science Foundation (No. 2015M581857)in part by Suzhou prospective applied research project (No. SYG201640)
文摘In order to improve maximum power point tracking(MPPT) performance, a variable and adaptive perturb and observe(P&O)method with current predictive control is proposed. This is applied in three-phase threelevel neutral-point clamped(NPC) photovoltaic(PV)generation systems. To control the active power and the reactive power independently,the decoupled power control combined with a space vector modulation block is adopted for three-phase NPC inverters in PV generation systems.To balance the neutral-point voltage of the three-phase NPC grid-connected inverter, a proportional and integral control is used by adj usting the dwell time of small voltage vectors. A three-phase NPC inverter rated at 12 kVA was established. The performance of the proposed method was tested and compared with the fixed perturbation MPPT algorithm under different conditions. Experimental results confirm the feasibility and advantages of the proposed method.
文摘Open-end winding motors are used extensively in ship electric propulsion systems,in which medium-voltage high-power inverters are a critical component.To increase the system voltage and power density,a dual five-level active neutral-point clamped(ANPC)inverter is proposed herein to drive medium-voltage open-end winding motors for ship electric propulsion.Each phase of this inverter comprises two five-level ANPC bridges and all the phases are powered by a common direct-current link.A hybrid modulation method is proposed to control this inverter.The series-connected switches in all the five-level ANPC bridges are operated at the fundamental frequency,and the other switches are controlled with a phase-shifted pulse-width modulation(PWM),which can achieve a natural balance between the neutral-point voltage and flying capacitor voltages in a carrier period.A closed-loop capacitor voltage balancing method based on adjusting the duty ratios of the PWM signals is proposed.The neutral-point voltage and flying capacitor voltages can be controlled independently and balanced without affecting the output phase voltage.Simulation and experimental results are presented to demonstrate the validity of this method.