Considering the gravitational correction through introduction of weakly interacting light vector U bosons, not only the equation of state (EoS) of the neutron star matter, but also the cooling properties of neutron ...Considering the gravitational correction through introduction of weakly interacting light vector U bosons, not only the equation of state (EoS) of the neutron star matter, but also the cooling properties of neutron stars may be changed. In this work, effects of gravitational correction on neutrino emission and cooling of neutron stars in the matter with neutrons, protons, electrons, muons, △- and △0 are studied by the relativistic mean field theory and the related cooling theory. The results show that the effects are sensitive to the ratio of coupling strength to mass squared of U bosons, defined as gu. With increasing gu, the radial region where direct Urca process of nucleons can be allowed in a neutron star with the fixed mass becomes narrower, while the neutrino emissivity is somewhat higher. Moreover, the gravitational correction suppresses the effects of △- on neutrino emission. The gravitational correction leads the star to cool faster, and the higher the gu is, the faster the star cools.展开更多
In the relativistic mean field theory and cooling theories,relativistic correction on neutrino emission from neutron stars in four typical nuclear parameter sets,GM1,GL85,GPS250 and GPS300 is studied.Results show that...In the relativistic mean field theory and cooling theories,relativistic correction on neutrino emission from neutron stars in four typical nuclear parameter sets,GM1,GL85,GPS250 and GPS300 is studied.Results show that relativistic effect makes the neutrino emissivity,neutrino luminosity and cooling rate lower,compared with the nonrelativistic case.And the influence of relativistic effect grows with the mass of the neutron star.GPS300 set leads to the biggest fall in neutrino emissivity,whereas GM1 set leads to the largest disparity in cooling rate caused by relativistic effect.展开更多
This study investigates the relativistic neutrino emissivity of the nucleonic and hyperonic direct Urca processes in the degenerate baryon matter of neutron stars, within the framework of relativistic mean field theor...This study investigates the relativistic neutrino emissivity of the nucleonic and hyperonic direct Urca processes in the degenerate baryon matter of neutron stars, within the framework of relativistic mean field theory. In particular, we study the influence of the isovector scalar interaction on the nucleonic and hyperonic direct Urca processes by exchanging δ mesons. The results indicate that δ mesons lead to obvious enhancement of the total neutrino emissivity, which must result in a more rapid cooling rate of neutron star matter.展开更多
文摘Considering the gravitational correction through introduction of weakly interacting light vector U bosons, not only the equation of state (EoS) of the neutron star matter, but also the cooling properties of neutron stars may be changed. In this work, effects of gravitational correction on neutrino emission and cooling of neutron stars in the matter with neutrons, protons, electrons, muons, △- and △0 are studied by the relativistic mean field theory and the related cooling theory. The results show that the effects are sensitive to the ratio of coupling strength to mass squared of U bosons, defined as gu. With increasing gu, the radial region where direct Urca process of nucleons can be allowed in a neutron star with the fixed mass becomes narrower, while the neutrino emissivity is somewhat higher. Moreover, the gravitational correction suppresses the effects of △- on neutrino emission. The gravitational correction leads the star to cool faster, and the higher the gu is, the faster the star cools.
基金Supported in part by National Natural Science Foundation of China under Grant Nos.11265009,11175077,11271055General Project of Liaoning Provincial Department of Education under Grant No.L2015005
文摘In the relativistic mean field theory and cooling theories,relativistic correction on neutrino emission from neutron stars in four typical nuclear parameter sets,GM1,GL85,GPS250 and GPS300 is studied.Results show that relativistic effect makes the neutrino emissivity,neutrino luminosity and cooling rate lower,compared with the nonrelativistic case.And the influence of relativistic effect grows with the mass of the neutron star.GPS300 set leads to the biggest fall in neutrino emissivity,whereas GM1 set leads to the largest disparity in cooling rate caused by relativistic effect.
基金Supported by Natural Science Foundation of China(11447165,11373047,11303063)
文摘This study investigates the relativistic neutrino emissivity of the nucleonic and hyperonic direct Urca processes in the degenerate baryon matter of neutron stars, within the framework of relativistic mean field theory. In particular, we study the influence of the isovector scalar interaction on the nucleonic and hyperonic direct Urca processes by exchanging δ mesons. The results indicate that δ mesons lead to obvious enhancement of the total neutrino emissivity, which must result in a more rapid cooling rate of neutron star matter.