Boron neutron capture therapy(BNCT)is recognized as a precise binary targeted radiotherapy technique that effectively eliminates tumors through the^(10)B(n,α)^(7)Li nuclear reaction.Among various neutron sources,acce...Boron neutron capture therapy(BNCT)is recognized as a precise binary targeted radiotherapy technique that effectively eliminates tumors through the^(10)B(n,α)^(7)Li nuclear reaction.Among various neutron sources,accelerator-based sources have emerged as particularly promising for BNCT applications.The^(7)Li(p,n)^(7)Be reaction is highly regarded as a potential neutron source for BNCT,owing to its low threshold energy for the reaction,significant neutron yield,appropriate average neutron energy,and additional benefits.This study utilized Monte Carlo simulations to model the physical interactions within a lithium target subjected to proton bombardment,including neutron moderation by an MgF_(2)moderator and subsequent BNCT dose analysis using a Snyder head phantom.The study focused on calculating the yields of epithermal neutrons for various incident proton energies,finding an optimal energy at 2.7 MeV.Furthermore,the Snyder head phantom was employed in dose simulations to validate the effectiveness of this specific incident energy when utilizing a^(7)Li(p,n)^(7)Be neutron source for BNCT purposes.展开更多
Researches have been made in recent years in the search of the proton drip-line and halo nuclei of P isotopes both in theory^([1~3])and in experimerit~[4].We have deduced the matter,proton,neutron and halo density di...Researches have been made in recent years in the search of the proton drip-line and halo nuclei of P isotopes both in theory^([1~3])and in experimerit~[4].We have deduced the matter,proton,neutron and halo density distribution of^(25)P with the theory of relativistic-mean-field(RMF)by using the parameter set of展开更多
A measurement of the ^235U prompt fission neutron spectrum (PFNS) by the recoil proton method was performed at the Institute of Nuclear Physics and Chemistry, China. Details of the method, which include the calculatio...A measurement of the ^235U prompt fission neutron spectrum (PFNS) by the recoil proton method was performed at the Institute of Nuclear Physics and Chemistry, China. Details of the method, which include the calculation and validation of the response matrix, are presented. The PFNS for ^235U in the energy range 1–12 MeV, induced by thermal neutrons, was obtained. The measured spectrum in the low-energy region was in good agreement with previous work and the ENDF/B-VII library, except for minor differences. In the high-energy region, however, the relative height of the measured spectrum was greater, and an analysis of the experiment indicated uncertainties of 13% at 10 MeV and 24% at 12 MeV. Experimental results showed that the recoil proton method could be used to measure prompt fission neutron spectra. Some directions for future work are included.展开更多
The ramifications of the effective mass splitting on the nuclear stopping and isospin tracer during heavy-ion collisions within the gigaelectron volt energy region are studied using an isospin-dependent quantum molecu...The ramifications of the effective mass splitting on the nuclear stopping and isospin tracer during heavy-ion collisions within the gigaelectron volt energy region are studied using an isospin-dependent quantum molecular dynamics model.Three isotope probes,i.e.,a proton,deuteron,and triton,are used to calculate the nuclear stopping.Compared to the mn*>mp*case,the mn*<mp*parameter results in a stronger stopping for protons but a weaker stopping for tritons.The calculations of the isospin tracer show that the mn*>mp*parameter results in a higher isospin mix than the mn*<mp*parameter.The rapidity and impact parameter dependences of the isospin tracer are also studied.A constraining of the effective mass splitting using the free nucleons with high rapidity and in a central rather than peripheral collision is suggested.展开更多
The neutron yield in the12C(d,n)13N reaction and the proton yield in the12C(d,p)13C reaction have been measured using deuteron beams of energies 0.6-3 MeV.The deuteron beam is delivered from a 4-MeV electrostatic acce...The neutron yield in the12C(d,n)13N reaction and the proton yield in the12C(d,p)13C reaction have been measured using deuteron beams of energies 0.6-3 MeV.The deuteron beam is delivered from a 4-MeV electrostatic accelerator and bombarded on a thick carbon target.The neutrons are detected at 0°,24°,and 48°and the protons at135°in the laboratory frame.Further,the ratio of the neutron yield to the proton yield was calculated.This can be used to effectively recognize the resonances.The resonances are found at 1.4 MeV,1.7 MeV,and 2.5 MeV in the12C(d,p)13C reaction,and at 1.6 MeV and 2.7 MeV in the12C(d,n)13N reaction.The proposed method provides a way to reduce systematic uncertainty and helps confirm more resonances in compound nuclei.展开更多
Neutrons have played a vital role in many nuclear physics fields.In some cases,the inverse kinematics of neutrons colliding with other nuclei are also worth studying.In this study,the inverse kinematics of thermal neu...Neutrons have played a vital role in many nuclear physics fields.In some cases,the inverse kinematics of neutrons colliding with other nuclei are also worth studying.In this study,the inverse kinematics of thermal neutrons colliding with high-energy protons is simulated by using the Monte Carlo method.Thermal neutrons are taken as target particles,whereas protons are incident particles.The simulation implies that,after collision,the energy of the output neutron at 0°equals the energy of the incident proton.A possible application of the result is proposed that might yield single-energy neutrons.Some key parameters of the conceptual design were evaluated,demonstrating that the design may reach high-neutron-energy resolution.展开更多
The described structural model tries to answer some open questions such as: Why do quarks not exist in the open state? Where are the antiparticles from the Big Bang?
Calculation results of the Monte Carlo method of the average energy of the electrostatic interaction between the quarks are presented to the neutron and proton. The proposed model of the distribution of quarks in prot...Calculation results of the Monte Carlo method of the average energy of the electrostatic interaction between the quarks are presented to the neutron and proton. The proposed model of the distribution of quarks in protons and neutrons is possible to assess the area which included a strong (gluon) interaction. Given the fact that the probability of finding a quark in the field with strong interaction is less than one, there is a good agreement between the experimental and calculated values of the mass difference between the neutron and the proton.展开更多
We show how the Koide relationships and associated triplet mass matrices can be generalized to derive the observed sum of the free neutron and proton rest masses in terms of the up and down current quark masses and th...We show how the Koide relationships and associated triplet mass matrices can be generalized to derive the observed sum of the free neutron and proton rest masses in terms of the up and down current quark masses and the Fermi vev to six parts in 10,000. This sum can then be solved for the separate neutron and proton masses using the neutron minus proton mass difference derived by the author in a recent, separate paper. The oppositely-signed charges of the up and down quarks are responsible for the appearance of a complex phase exp(iδ) and real rotation angle θ which leads on an independent basis to mass and mixing matrices similar to that of Cabibbo, Kobayashi and Maskawa (CKM). These can then be used to specify the neutron and proton mass relationships to unlimited accuracy using θ as a nucleon fitting angle deduced from empirical data. This fitting angle is then shown to be related to an invariant of the CKM mixing angles within experimental errors. Also developed is a master mass and mixing matrix which may help to interconnect all baryon and quark masses and mixing angles. The Koide generalizations developed here enable these neutron and proton mass relationships to be given a Lagrangian formulation based on neutron and proton field strength tensors that contain vacuum-amplified and current quark wavefunctions and masses. In the course of development, we also uncover new Koide relationships for the neutrinos, the up quarks, and the down quarks.展开更多
Experimental estimate values of the n-p interaction between the odd protonand the aligning neutron pairs for odd proton nuclei in the first band crossing region areextracted based on the experimental quasi-particle ro...Experimental estimate values of the n-p interaction between the odd protonand the aligning neutron pairs for odd proton nuclei in the first band crossing region areextracted based on the experimental quasi-particle routhians.The reliability of thismethod and the relation between the anomalous band crossing and the neutron-protoninteraction are discussed.展开更多
A bound state formalism derived from a fermion-boson symmetric Lagrangian has been used to calculate the nucleon masses, the charge neutrality of the neutron, the magnetic moments and the electromagnetic form factor r...A bound state formalism derived from a fermion-boson symmetric Lagrangian has been used to calculate the nucleon masses, the charge neutrality of the neutron, the magnetic moments and the electromagnetic form factor ratios μpGEp/GMpand μnGEn/GMn. A quantitative description is obtained, assuming a mixing of a scalar bound state of 3(f f¯)fstructure with its corresponding vector (f f¯)fstate (f indicating massless elementary fermions). Only a few parameters are needed, mainly fixed by energy and momentum conservation. The nucleon stability is explained by an extra binding in the confinement potential, negative for electric and positive for magnetic binding of the proton, and opposite for the neutron. The stronger electric extra binding of the proton allows a decay of the neutron to proton and electron.展开更多
Geant4 based Monte Carlo study has been carried out to assess the improvement in efficiency of the planar structure of Silicon Carbide(SiC)-based semiconductor fast neutron detector with the stacked structure. A proto...Geant4 based Monte Carlo study has been carried out to assess the improvement in efficiency of the planar structure of Silicon Carbide(SiC)-based semiconductor fast neutron detector with the stacked structure. A proton recoil detector was simulated, which consists of hydrogenous converter, i.e., high-density polyethylene(HDPE) for generating recoil protons by means of neutron elastic scattering(n, p) reaction and semiconductor material SiC, for generating a detectable electrical signal upon transport of recoil protons through it. SiC is considered in order to overcome the various factors associated with conventional Si-based devices such as operability in a harsh radiation environment, as often encountered in nuclear facilities. Converter layer thickness is optimized by considering 10~9 neutron events of different monoenergetic neutron sources as well as ^(241)Am-Be neutron spectrum. It is found that the optimized thickness for neutron energy range of 1–10 MeV is ~400 μm. However, the efficiency of fast neutron detection is estimated to be only 0.112%,which is considered very low for meaningful and reliable detection of neutrons. To overcome this problem, a stacked juxtaposition of converter layer between SiC layers has been analyzed in order to achieve high efficiency. It is noted that a tenfold efficiency improvement has been obtained—1.04% for 10 layers stacked configuration vis-à-vis 0.112% of single converter layer detector. Further simulation of the stacked detector with respect to variable converter thickness has been performed to achieve the efficiency as high as ~3.85% with up to 50 stacks.展开更多
A combination of NAA and micro-PIXE was used to study concentrations and distributions of platinum group elements (PGE) in ores from Xinjie Cu-Pt deposit.The NAA results of the bulk indicate that the ores belong to th...A combination of NAA and micro-PIXE was used to study concentrations and distributions of platinum group elements (PGE) in ores from Xinjie Cu-Pt deposit.The NAA results of the bulk indicate that the ores belong to the enriched Pt-Pd type.The element concentration maps of scanning micro-PIXE for the ores show that the occurence form of Pt is independent arsenide minerals. No PGE were detected in chalcopyrite of Xinjie Cu-Pt deposit. These information are economically beneficial to the mineral smelting process.展开更多
Filtered neutron technique was applied for producing quasi-monoenergetic neutron beams of 24 keV, 54 keV, 133 keV and 148 keV at the horizontal neutron channel No. 4 of the Dalat Nuclear Research Reactor. The study on...Filtered neutron technique was applied for producing quasi-monoenergetic neutron beams of 24 keV, 54 keV, 133 keV and 148 keV at the horizontal neutron channel No. 4 of the Dalat Nuclear Research Reactor. The study on physical characteristics of these beam lines has been carried out for efficient applications in neutron capture experiments. The filtered neutron spectrum of each beam has been simulated by Monte-Carlo method and experimentally measured by a gas-filled protonrecoil spectrometer. The neutron fluxes of these filtered beams were measured by the activation technique with standard foils of 197Au, using a high efficient HPGe digital gamma-ray spectrometer.展开更多
Phosphotungstic acid is an excellent proton conductor that can be incorporated into porous supports, and nanocomposite proton exchange membrane materials made from mesoporous silica impregnated with phosphotungstic ac...Phosphotungstic acid is an excellent proton conductor that can be incorporated into porous supports, and nanocomposite proton exchange membrane materials made from mesoporous silica impregnated with phosphotungstic acid have been suggested for use in fuels cells operating> 100 ℃. In this work, quasielastic neutron scattering was used to study proton self-diffusion in mesoporous disordered and P6 mm symmetry silica impregnated with two concentrations of phosphotungstic acid. Overall, the silica structure had a significantly greater effect on proton conduction and diffusion than phosphotungstic acid concentration, with higher proton conduction occurring for the P6 mm symmetry silica samples. Quasielastic neutron scattering revealed two populations of protons diffusing through each sample, and that proton conduction is limited by the slower of these populations, which diffuse via a jump-diffusion mechanism. Whilst the fundamental jump-diffusion mechanism by which these slower protons moved was found to be similar for both silica supports and phosphotungstic acid concentrations, the faster diffusion occurring in P6 mm structured silica arises from a lower residence time of protons moving between sites in the jump-diffusion model, suggesting a lower energy barrier.展开更多
In the framework of the relativistic mean field theory, the isovector scalar interaction is considered by exchanging δ meson to study the influence of δ meson on the cooling properties of neutron star matter. The ca...In the framework of the relativistic mean field theory, the isovector scalar interaction is considered by exchanging δ meson to study the influence of δ meson on the cooling properties of neutron star matter. The calculation results show that with the inclusion of δ meson, the neutrino emissivity of the direct Urca processes increases, and thus enhances the cooling of neutron star matter. When strong proton superfluidity is considered, the theoretical cooling curves agree with the observed thermal radiation for isolated neutron stars.展开更多
The N/Z ratio of free nucleons from collisions of neutron-rich nuclei as a function of their momentum is studied by means of isospin-dependent Quantum Molecular Dynamics. We find that this ratio is not only sensitive ...The N/Z ratio of free nucleons from collisions of neutron-rich nuclei as a function of their momentum is studied by means of isospin-dependent Quantum Molecular Dynamics. We find that this ratio is not only sensitive to the form of the density dependence of the symmetry potential energy but also its strength determined by the symmetry energy coefficient. The uncertainties about the symmetry energy coefficient influence the accuracy of probing the density dependence of the symmetry energy by means of the N/Z ratio of free nucleons of neutron-rich nuclei.展开更多
A popular method to fit the experimental data of nuclear total reaction cros section is the Glauber model.It fits the experimental data at high energy very well,but has a big difference at ingermediate energy.We have ...A popular method to fit the experimental data of nuclear total reaction cros section is the Glauber model.It fits the experimental data at high energy very well,but has a big difference at ingermediate energy.We have added the coulomb correction and the finite range correction into the Glauber model and used 2-parameter Fermi density distribution:展开更多
文摘Boron neutron capture therapy(BNCT)is recognized as a precise binary targeted radiotherapy technique that effectively eliminates tumors through the^(10)B(n,α)^(7)Li nuclear reaction.Among various neutron sources,accelerator-based sources have emerged as particularly promising for BNCT applications.The^(7)Li(p,n)^(7)Be reaction is highly regarded as a potential neutron source for BNCT,owing to its low threshold energy for the reaction,significant neutron yield,appropriate average neutron energy,and additional benefits.This study utilized Monte Carlo simulations to model the physical interactions within a lithium target subjected to proton bombardment,including neutron moderation by an MgF_(2)moderator and subsequent BNCT dose analysis using a Snyder head phantom.The study focused on calculating the yields of epithermal neutrons for various incident proton energies,finding an optimal energy at 2.7 MeV.Furthermore,the Snyder head phantom was employed in dose simulations to validate the effectiveness of this specific incident energy when utilizing a^(7)Li(p,n)^(7)Be neutron source for BNCT purposes.
文摘Researches have been made in recent years in the search of the proton drip-line and halo nuclei of P isotopes both in theory^([1~3])and in experimerit~[4].We have deduced the matter,proton,neutron and halo density distribution of^(25)P with the theory of relativistic-mean-field(RMF)by using the parameter set of
基金supported by the National Natural Science Foundation of China(No.11775196)the Chinese Special Project for ITER(No.2015GB108006)
文摘A measurement of the ^235U prompt fission neutron spectrum (PFNS) by the recoil proton method was performed at the Institute of Nuclear Physics and Chemistry, China. Details of the method, which include the calculation and validation of the response matrix, are presented. The PFNS for ^235U in the energy range 1–12 MeV, induced by thermal neutrons, was obtained. The measured spectrum in the low-energy region was in good agreement with previous work and the ENDF/B-VII library, except for minor differences. In the high-energy region, however, the relative height of the measured spectrum was greater, and an analysis of the experiment indicated uncertainties of 13% at 10 MeV and 24% at 12 MeV. Experimental results showed that the recoil proton method could be used to measure prompt fission neutron spectra. Some directions for future work are included.
基金the National Natural Science Foundation of China(Nos.11905018 and 11875328)the Scientific and Technological Innovation Programs of Higher Education Institutions of Shanxi Province,China(No.2019L0908)。
文摘The ramifications of the effective mass splitting on the nuclear stopping and isospin tracer during heavy-ion collisions within the gigaelectron volt energy region are studied using an isospin-dependent quantum molecular dynamics model.Three isotope probes,i.e.,a proton,deuteron,and triton,are used to calculate the nuclear stopping.Compared to the mn*>mp*case,the mn*<mp*parameter results in a stronger stopping for protons but a weaker stopping for tritons.The calculations of the isospin tracer show that the mn*>mp*parameter results in a higher isospin mix than the mn*<mp*parameter.The rapidity and impact parameter dependences of the isospin tracer are also studied.A constraining of the effective mass splitting using the free nucleons with high rapidity and in a central rather than peripheral collision is suggested.
基金partially supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Nos.XDB16 and XDPB09)the National Natural Science Foundation of China(Nos.11890714 and 11421505)the Key Research Program of Frontier Sciences of the CAS(No.QYZDJ-SSW-SLH002)
文摘The neutron yield in the12C(d,n)13N reaction and the proton yield in the12C(d,p)13C reaction have been measured using deuteron beams of energies 0.6-3 MeV.The deuteron beam is delivered from a 4-MeV electrostatic accelerator and bombarded on a thick carbon target.The neutrons are detected at 0°,24°,and 48°and the protons at135°in the laboratory frame.Further,the ratio of the neutron yield to the proton yield was calculated.This can be used to effectively recognize the resonances.The resonances are found at 1.4 MeV,1.7 MeV,and 2.5 MeV in the12C(d,p)13C reaction,and at 1.6 MeV and 2.7 MeV in the12C(d,n)13N reaction.The proposed method provides a way to reduce systematic uncertainty and helps confirm more resonances in compound nuclei.
基金This work was supported by the National Natural Science Foundation of China(No.71373140)the COSTIND Science Challenge Project(No.TZ2018001).
文摘Neutrons have played a vital role in many nuclear physics fields.In some cases,the inverse kinematics of neutrons colliding with other nuclei are also worth studying.In this study,the inverse kinematics of thermal neutrons colliding with high-energy protons is simulated by using the Monte Carlo method.Thermal neutrons are taken as target particles,whereas protons are incident particles.The simulation implies that,after collision,the energy of the output neutron at 0°equals the energy of the incident proton.A possible application of the result is proposed that might yield single-energy neutrons.Some key parameters of the conceptual design were evaluated,demonstrating that the design may reach high-neutron-energy resolution.
文摘The described structural model tries to answer some open questions such as: Why do quarks not exist in the open state? Where are the antiparticles from the Big Bang?
文摘Calculation results of the Monte Carlo method of the average energy of the electrostatic interaction between the quarks are presented to the neutron and proton. The proposed model of the distribution of quarks in protons and neutrons is possible to assess the area which included a strong (gluon) interaction. Given the fact that the probability of finding a quark in the field with strong interaction is less than one, there is a good agreement between the experimental and calculated values of the mass difference between the neutron and the proton.
文摘We show how the Koide relationships and associated triplet mass matrices can be generalized to derive the observed sum of the free neutron and proton rest masses in terms of the up and down current quark masses and the Fermi vev to six parts in 10,000. This sum can then be solved for the separate neutron and proton masses using the neutron minus proton mass difference derived by the author in a recent, separate paper. The oppositely-signed charges of the up and down quarks are responsible for the appearance of a complex phase exp(iδ) and real rotation angle θ which leads on an independent basis to mass and mixing matrices similar to that of Cabibbo, Kobayashi and Maskawa (CKM). These can then be used to specify the neutron and proton mass relationships to unlimited accuracy using θ as a nucleon fitting angle deduced from empirical data. This fitting angle is then shown to be related to an invariant of the CKM mixing angles within experimental errors. Also developed is a master mass and mixing matrix which may help to interconnect all baryon and quark masses and mixing angles. The Koide generalizations developed here enable these neutron and proton mass relationships to be given a Lagrangian formulation based on neutron and proton field strength tensors that contain vacuum-amplified and current quark wavefunctions and masses. In the course of development, we also uncover new Koide relationships for the neutrinos, the up quarks, and the down quarks.
基金The project supported by China Science Foundation of Nuclear Industry
文摘Experimental estimate values of the n-p interaction between the odd protonand the aligning neutron pairs for odd proton nuclei in the first band crossing region areextracted based on the experimental quasi-particle routhians.The reliability of thismethod and the relation between the anomalous band crossing and the neutron-protoninteraction are discussed.
文摘A bound state formalism derived from a fermion-boson symmetric Lagrangian has been used to calculate the nucleon masses, the charge neutrality of the neutron, the magnetic moments and the electromagnetic form factor ratios μpGEp/GMpand μnGEn/GMn. A quantitative description is obtained, assuming a mixing of a scalar bound state of 3(f f¯)fstructure with its corresponding vector (f f¯)fstate (f indicating massless elementary fermions). Only a few parameters are needed, mainly fixed by energy and momentum conservation. The nucleon stability is explained by an extra binding in the confinement potential, negative for electric and positive for magnetic binding of the proton, and opposite for the neutron. The stronger electric extra binding of the proton allows a decay of the neutron to proton and electron.
基金supported by the grant of a research fellowship from Indira Gandhi Centre for Atomic Research,Department of Atomic Energy,India
文摘Geant4 based Monte Carlo study has been carried out to assess the improvement in efficiency of the planar structure of Silicon Carbide(SiC)-based semiconductor fast neutron detector with the stacked structure. A proton recoil detector was simulated, which consists of hydrogenous converter, i.e., high-density polyethylene(HDPE) for generating recoil protons by means of neutron elastic scattering(n, p) reaction and semiconductor material SiC, for generating a detectable electrical signal upon transport of recoil protons through it. SiC is considered in order to overcome the various factors associated with conventional Si-based devices such as operability in a harsh radiation environment, as often encountered in nuclear facilities. Converter layer thickness is optimized by considering 10~9 neutron events of different monoenergetic neutron sources as well as ^(241)Am-Be neutron spectrum. It is found that the optimized thickness for neutron energy range of 1–10 MeV is ~400 μm. However, the efficiency of fast neutron detection is estimated to be only 0.112%,which is considered very low for meaningful and reliable detection of neutrons. To overcome this problem, a stacked juxtaposition of converter layer between SiC layers has been analyzed in order to achieve high efficiency. It is noted that a tenfold efficiency improvement has been obtained—1.04% for 10 layers stacked configuration vis-à-vis 0.112% of single converter layer detector. Further simulation of the stacked detector with respect to variable converter thickness has been performed to achieve the efficiency as high as ~3.85% with up to 50 stacks.
文摘A combination of NAA and micro-PIXE was used to study concentrations and distributions of platinum group elements (PGE) in ores from Xinjie Cu-Pt deposit.The NAA results of the bulk indicate that the ores belong to the enriched Pt-Pd type.The element concentration maps of scanning micro-PIXE for the ores show that the occurence form of Pt is independent arsenide minerals. No PGE were detected in chalcopyrite of Xinjie Cu-Pt deposit. These information are economically beneficial to the mineral smelting process.
文摘Filtered neutron technique was applied for producing quasi-monoenergetic neutron beams of 24 keV, 54 keV, 133 keV and 148 keV at the horizontal neutron channel No. 4 of the Dalat Nuclear Research Reactor. The study on physical characteristics of these beam lines has been carried out for efficient applications in neutron capture experiments. The filtered neutron spectrum of each beam has been simulated by Monte-Carlo method and experimentally measured by a gas-filled protonrecoil spectrometer. The neutron fluxes of these filtered beams were measured by the activation technique with standard foils of 197Au, using a high efficient HPGe digital gamma-ray spectrometer.
基金support from Australian Research Council Discovery Project DP120102325the Centre forMicroscopy and Microanalysis at the University of Queensland+1 种基金Curtin Universitythe Australian Institute for Nuclear Science and Engineering for support through a Post-Graduate Research Award
文摘Phosphotungstic acid is an excellent proton conductor that can be incorporated into porous supports, and nanocomposite proton exchange membrane materials made from mesoporous silica impregnated with phosphotungstic acid have been suggested for use in fuels cells operating> 100 ℃. In this work, quasielastic neutron scattering was used to study proton self-diffusion in mesoporous disordered and P6 mm symmetry silica impregnated with two concentrations of phosphotungstic acid. Overall, the silica structure had a significantly greater effect on proton conduction and diffusion than phosphotungstic acid concentration, with higher proton conduction occurring for the P6 mm symmetry silica samples. Quasielastic neutron scattering revealed two populations of protons diffusing through each sample, and that proton conduction is limited by the slower of these populations, which diffuse via a jump-diffusion mechanism. Whilst the fundamental jump-diffusion mechanism by which these slower protons moved was found to be similar for both silica supports and phosphotungstic acid concentrations, the faster diffusion occurring in P6 mm structured silica arises from a lower residence time of protons moving between sites in the jump-diffusion model, suggesting a lower energy barrier.
基金supported by National Natural Science Foundation of China (Nos.10675024,11075063)National Fundamental Fund Project of Subsidy Funds of Personnel Training of China (J0730311)
文摘In the framework of the relativistic mean field theory, the isovector scalar interaction is considered by exchanging δ meson to study the influence of δ meson on the cooling properties of neutron star matter. The calculation results show that with the inclusion of δ meson, the neutrino emissivity of the direct Urca processes increases, and thus enhances the cooling of neutron star matter. When strong proton superfluidity is considered, the theoretical cooling curves agree with the observed thermal radiation for isolated neutron stars.
基金The project supported by National Natural Science Foundation of China under Grant Nos.10175093 and 10235030+4 种基金the Science Foundation of Chinese Nuclear Industry and the State Key Basic Research Development Program under Contract No.G20000774the Knowledge Innovation Project of the Chinese Academy of Sciences under Grant No.KJCX2-SW-N02the CASK.C.Wong Post-doctors Research Award Fund
文摘The N/Z ratio of free nucleons from collisions of neutron-rich nuclei as a function of their momentum is studied by means of isospin-dependent Quantum Molecular Dynamics. We find that this ratio is not only sensitive to the form of the density dependence of the symmetry potential energy but also its strength determined by the symmetry energy coefficient. The uncertainties about the symmetry energy coefficient influence the accuracy of probing the density dependence of the symmetry energy by means of the N/Z ratio of free nucleons of neutron-rich nuclei.
文摘A popular method to fit the experimental data of nuclear total reaction cros section is the Glauber model.It fits the experimental data at high energy very well,but has a big difference at ingermediate energy.We have added the coulomb correction and the finite range correction into the Glauber model and used 2-parameter Fermi density distribution: