In this work,we perform a Bayesian inference of the crust-core transition density ρ_(t) of neutron stars based on the neutron-star radius and neutron-skin thickness data using a thermodynamical method.Uniform and Gau...In this work,we perform a Bayesian inference of the crust-core transition density ρ_(t) of neutron stars based on the neutron-star radius and neutron-skin thickness data using a thermodynamical method.Uniform and Gaussian distributions for the ρ_(t) prior were adopted in the Bayesian approach.It has a larger probability of having values higher than 0.1 fm^(−3) for ρ_(t) as the uniform prior and neutron-star radius data were used.This was found to be controlled by the curvature K_(sym) of the nuclear symmetry energy.This phenomenon did not occur if K_(sym) was not extremely negative,namely,K_(sym)>−200 MeV.The value ofρ_(t) obtained was 0.075_(−0.01)^(+0.005) fm^(−3) at a confidence level of 68%when both the neutron-star radius and neutron-skin thickness data were considered.Strong anti-correlations were observed between ρ_(t),slope L,and curvature of the nuclear symmetry energy.The dependence of the three L-K_(sym) correlations predicted in the literature on crust-core density and pressure was quantitatively investigated.The most probable value of 0.08 fm^(−3) for ρ_(t) was obtained from the L-K_(sym) relationship proposed by Holt et al.while larger values were preferred for the other two relationships.展开更多
We adopt the Nambu–Jona-Lasinio(NJL) model to study the crust-core transition properties in neutron stars(NSs). For a given momentum cutoff and symmetry energy of saturation density in the NJL model, decreasing the s...We adopt the Nambu–Jona-Lasinio(NJL) model to study the crust-core transition properties in neutron stars(NSs). For a given momentum cutoff and symmetry energy of saturation density in the NJL model, decreasing the slope of the symmetry energy gives rise to an increase in the crust-core transition density and transition pressure.Given the slope of the symmetry energy at saturation density, the transition density and corresponding transition pressure increase with increasing symmetry energy. The increasing trend between the fraction of the crustal moment of inertia and the slope of symmetry energy at saturation density indicates that a relatively large momentum cutoff of the NJL model is preferred. For a momentum cutoff of 500 Me V, the fraction of the crustal moment of inertia clearly increases with the slope of symmetry energy at saturation density. Thus, at the required fraction(7%) of the crustal moment of inertia, the NJL model with momentum cutoff of 500 Me V and a large slope of the symmetry energy of saturation density can give the upper limit of the mass of the Vela pulsar to be above 1.40 M.展开更多
基金supported by the Shanxi Provincial Foundation for Returned Overseas Scholars (No. 20220037)Natural Science Foundation of Shanxi Province (No. 20210302123085)Discipline Construction Project of Yuncheng University
文摘In this work,we perform a Bayesian inference of the crust-core transition density ρ_(t) of neutron stars based on the neutron-star radius and neutron-skin thickness data using a thermodynamical method.Uniform and Gaussian distributions for the ρ_(t) prior were adopted in the Bayesian approach.It has a larger probability of having values higher than 0.1 fm^(−3) for ρ_(t) as the uniform prior and neutron-star radius data were used.This was found to be controlled by the curvature K_(sym) of the nuclear symmetry energy.This phenomenon did not occur if K_(sym) was not extremely negative,namely,K_(sym)>−200 MeV.The value ofρ_(t) obtained was 0.075_(−0.01)^(+0.005) fm^(−3) at a confidence level of 68%when both the neutron-star radius and neutron-skin thickness data were considered.Strong anti-correlations were observed between ρ_(t),slope L,and curvature of the nuclear symmetry energy.The dependence of the three L-K_(sym) correlations predicted in the literature on crust-core density and pressure was quantitatively investigated.The most probable value of 0.08 fm^(−3) for ρ_(t) was obtained from the L-K_(sym) relationship proposed by Holt et al.while larger values were preferred for the other two relationships.
基金National Natural Science Foundation of the People’s Republic of China“The thermal evolution and X-ray bursts in accreting strange stars”(12263006)“A combining study of the theoretical simulations and observations about the structure and evolution of magnetic massive stars and related objects”(U2031204)Natural Science Foundation of Xinjiang“The study of crust cooling of soft X-ray transients”(2020D01C063).
基金Supported by National Natural Science Foundation of China(11775049,11275048)the China Jiangsu Provincial Natural Science Foundation(BK20131286)
文摘We adopt the Nambu–Jona-Lasinio(NJL) model to study the crust-core transition properties in neutron stars(NSs). For a given momentum cutoff and symmetry energy of saturation density in the NJL model, decreasing the slope of the symmetry energy gives rise to an increase in the crust-core transition density and transition pressure.Given the slope of the symmetry energy at saturation density, the transition density and corresponding transition pressure increase with increasing symmetry energy. The increasing trend between the fraction of the crustal moment of inertia and the slope of symmetry energy at saturation density indicates that a relatively large momentum cutoff of the NJL model is preferred. For a momentum cutoff of 500 Me V, the fraction of the crustal moment of inertia clearly increases with the slope of symmetry energy at saturation density. Thus, at the required fraction(7%) of the crustal moment of inertia, the NJL model with momentum cutoff of 500 Me V and a large slope of the symmetry energy of saturation density can give the upper limit of the mass of the Vela pulsar to be above 1.40 M.