Based on the equations of state from the relativistic mean field theory without and with the inclusion of strangeness-bearing hyperons, we study the dimensionless spin parameter j = cJ/(GM2) of uniformly rotat- ing ...Based on the equations of state from the relativistic mean field theory without and with the inclusion of strangeness-bearing hyperons, we study the dimensionless spin parameter j = cJ/(GM2) of uniformly rotat- ing neutron stars. It is shown that the maximum value of the spin parameter jmax of a neutron star rotating at the Keplerian frequency fK is .jmax - 0.7 when the star mass M 〉 0.SM⊙, which is sustained for various versions of equations of state without and with hyperons. The relationship between j and the scaled rotation frequency f /fK is found to be insensitive to the star mass or the adopted equation of state in the models without hyperons. However, the emergence of byperons in neutron stars will lead to an uncertainty of the spin parameter j, which in turn could generate a complexity in the theoretical study of the quasi-periodic oscillations observed in disk-accreting compact-star systems.展开更多
The neutron-induced total cross-section of ^(209)Bi is crucial for the physical design and safety assessment of lead-based fast reactors, and the quality of experimental data should be improved for evaluation and appl...The neutron-induced total cross-section of ^(209)Bi is crucial for the physical design and safety assessment of lead-based fast reactors, and the quality of experimental data should be improved for evaluation and application.A recent experiment was conducted on the back-streaming white neutron beamline(Back-n) at the China Spallation Neutron Source(CSNS) using the neutron total cross-section spectrometer(NTOX). The neutron energy was determined using a fast multi-cell fission chamber and the time-of-flight technique. Two high-purity bismuth samples,6 mm and 20 mm in thickness, were chosen for neutron transmission measurements and comparisons. The neutron total cross-sections of ^(209)Bi, ranging from 0.3 e V to 20 Me V, were derived considering neutron flight time determination, flight path calibration, and background subtraction. A comparison of the experimental results with the data in the ENDF/B-VⅢ.0 library showed fair agreement, and the point-wise cross-sections were found to be consistent with existing experimental data. Special attention was given to the determination of resonance parameters, which were analyzed using the R-matrix code SAMMY and Bayesian method in the 0.5 ke V to 20 ke V energy range. The extracted resonance parameters were compared to previously reported results and evaluated data. This study is recognized as the first one where the neutron total cross-section of bismuth across such a broad energy spectrum is measured in a single measurement or experiment, and it provides valuable data for the assessment of related reaction information for evaluated libraries and the advancement of lead-bismuth-based nuclear systems.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11175108,U1432119,1146114100,11205075,11375076 and 11475104the Shandong Natural Science Foundation under Grant No ZR2014AQ012the Foundation of Shandong University under Grant No 2015WHWLJH01
文摘Based on the equations of state from the relativistic mean field theory without and with the inclusion of strangeness-bearing hyperons, we study the dimensionless spin parameter j = cJ/(GM2) of uniformly rotat- ing neutron stars. It is shown that the maximum value of the spin parameter jmax of a neutron star rotating at the Keplerian frequency fK is .jmax - 0.7 when the star mass M 〉 0.SM⊙, which is sustained for various versions of equations of state without and with hyperons. The relationship between j and the scaled rotation frequency f /fK is found to be insensitive to the star mass or the adopted equation of state in the models without hyperons. However, the emergence of byperons in neutron stars will lead to an uncertainty of the spin parameter j, which in turn could generate a complexity in the theoretical study of the quasi-periodic oscillations observed in disk-accreting compact-star systems.
基金the National Natural Science Foundation of China(12375296)the Key Laboratory of Nuclear Data Foundation(JCKY2022201C153)+1 种基金the National Key Research and Development Plan(2022YFA1603303)the Natural Science Foundation of Hunan Province of China(2021JJ40444,2020RC3054)。
文摘The neutron-induced total cross-section of ^(209)Bi is crucial for the physical design and safety assessment of lead-based fast reactors, and the quality of experimental data should be improved for evaluation and application.A recent experiment was conducted on the back-streaming white neutron beamline(Back-n) at the China Spallation Neutron Source(CSNS) using the neutron total cross-section spectrometer(NTOX). The neutron energy was determined using a fast multi-cell fission chamber and the time-of-flight technique. Two high-purity bismuth samples,6 mm and 20 mm in thickness, were chosen for neutron transmission measurements and comparisons. The neutron total cross-sections of ^(209)Bi, ranging from 0.3 e V to 20 Me V, were derived considering neutron flight time determination, flight path calibration, and background subtraction. A comparison of the experimental results with the data in the ENDF/B-VⅢ.0 library showed fair agreement, and the point-wise cross-sections were found to be consistent with existing experimental data. Special attention was given to the determination of resonance parameters, which were analyzed using the R-matrix code SAMMY and Bayesian method in the 0.5 ke V to 20 ke V energy range. The extracted resonance parameters were compared to previously reported results and evaluated data. This study is recognized as the first one where the neutron total cross-section of bismuth across such a broad energy spectrum is measured in a single measurement or experiment, and it provides valuable data for the assessment of related reaction information for evaluated libraries and the advancement of lead-bismuth-based nuclear systems.